

EIAR Volume 4: Offshore Infrastructure Technical Appendices Appendix 4.3.6-6 Displacement Matrices

Kish Offshore Wind Ltd

RWE #SLR GOBe

www.dublinarray-marineplanning.ie

Dublin Array Offshore Wind Farm

Environmental Impact Assessment Report

Volume 4, Appendix 3.6-6 – Displacement Matrices

Contents

1	Intro	oduction	7						
2	Disp	placement Matrices for Dublin Array	11						
	2.1	Manx Shearwater	11						
	2.2	Gannet	16						
	2.3	Shag	22						
	2.4	Kittiwake	26						
	2.5	Guillemot	32						
	2.6	Razorbill	39						
3	Cum	nulative Displacement Matrices	46						
	Gan	net	47						
	Kittiwake								
	Guil	llemot	49						
	Razo	orbill	50						

Tables

Table 1 'Disturbance Sensitivity' and 'Habitat Specialization' scores from Bradbury et al. (2014) for
species that were recorded regularly on baseline surveys in the Dublin Array Study Area
Table 2 Estimated monthly numbers of Manx shearwaters in the array area only, and in the array
area plus 2 km buffer area, based on data from 2016-2017 and 2019-2021 surveys11
Table 3 Estimated number of Manx shearwaters predicted to be at risk of mortality following
displacement from the array area in the breeding season (April to August)13
Table 4 Estimated number of Manx shearwaters predicted to be at risk of mortality following
displacement from the array area plus 2 km buffer in the breeding season (April to August)13
Table 5 Estimated number of Manx shearwaters predicted to be at risk of mortality following
displacement from the array area in the autumn migration period of the non-breeding season
(September to early October)14
Table 6 Estimated number of Manx shearwaters predicted to be at risk of mortality following
displacement from the array area plus 2 km buffer in the autumn migration period of the non-
breeding season (September to early October)14
Table 7 Estimated number of Manx shearwaters predicted to be at risk of mortality following
displacement from the array area in the spring migration period of the non-breeding season (late
March)15
Table 8 Estimated number of Manx shearwaters predicted to be at risk of mortality following
displacement from the array area plus 2 km buffer in the spring migration period of the non-
breeding season (late March)15

Table 9 Estimated monthly numbers of gannets in the array area only, and in the array area plus
2 km buffer area, based on data from 2016-2017 and 2019-2021 surveys16
Table 10 Estimated number of gannets predicted to be at risk of mortality following displacement
from the array area in the breeding season (March to September)19
Table 11 Estimated number of gannets predicted to be at risk of mortality following displacement
from the array area plus 2 buffer in the breeding season (March to September)19
Table 12 Estimated number of gannets predicted to be at risk of mortality following displacement
from the array area in the autumn migration period of the non-breeding season (October to
November)
Table 13 Estimated number of gannets predicted to be at risk of mortality following displacement
from the array area plus 2 km buffer in the autumn migration period of the non-breeding season
(October to November)
Table 14 Estimated number of gannets predicted to be at risk of mortality following displacement
from the array area in the spring migration period of the non-breeding season (December to
February)
Table 15 Estimated number of gannets predicted to be at risk of mortality following displacement
from the array area plus 2 km buffer in the spring migration period of the non-breeding season
(December to February)21
Table 16 Estimated monthly numbers of shags in the array area only, and in the array area plus 2 km
buffer area, based on data from 2016-2017 and 2019-2021 surveys22
Table 17 Estimated number of shags predicted to be at risk of mortality following displacement from
the array area in the breeding season (February to August)24
Table 18 Estimated number of shags predicted to be at risk of mortality following displacement from
the array area plus 2 buffer in the breeding season (February to August)24
Table 19 Estimated number of shags predicted to be at risk of mortality following displacement from
the array area in the non-breeding season (September to January)25
Table 20 Estimated number of shags predicted to be at risk of mortality following displacement from
the array area plus 2 km buffer in the non-breeding season (September to January)25
Table 21 Estimated monthly numbers of kittiwakes in the array area only, and in the array area plus
2 km buffer area, based on data from 2016-2017 and 2019-2021 surveys26
Table 22 Estimated number of kittiwakes predicted to be at risk of mortality following displacement
from the array area in the migration-free breeding season (May to July)
Table 23 Estimated number of kittiwakes predicted to be at risk of mortality following displacement
from the array area plus 2 buffer in the migration-free breeding season (May to July)29
Table 24 Estimated number of kittiwakes predicted to be at risk of mortality following displacement
from the array area in the autumn migration period of the non-breeding season (August to
December)
Table 25 Estimated number of kittiwakes predicted to be at risk of mortality following displacement
from the array area plus 2 buffer in the autumn migration period of the non-breeding season
(August to December)
Table 26 Estimated number of kittiwakes predicted to be at risk of mortality following displacement
from the array area in the spring migration period of the non-breeding season (January to April)31

Table 27 Estimated number of kittiwakes predicted to be at risk of mortality following displacement from the array area plus 2 buffer in the spring migration period of the non-breeding season (January
to April)
Table 28 Estimated monthly numbers of guillemots in the array area only, and in the array area plus
2 km buffer area, based on data from 2016-2017 and 2019-2021 surveys
Table 29 Ratio of the total number of identified guillemots and razorbills by month in the array area
and 4 km buffer from the 2016-2017 and 2019-2021 surveys
Table 30 Estimated numbers of additional guillemots by month in the array area based on 2016-2017
and 2019-2021 surveys
Table 31 Estimated numbers of additional guillemots by month in the array area and 2 km buffer
based on 2016-2017 and 2019-2021 surveys
Table 32 Estimated number of guillemots predicted to be at risk of mortality following displacement
from the array area in the breeding season (March to July)37
Table 33 Estimated number of guillemots predicted to be at risk of mortality following displacement
from the array area plus 2 buffer in the breeding season (March to July)37
Table 34 Estimated number of guillemots predicted to be at risk of mortality following displacement
from the array area in the non-breeding season (August to February)
Table 35 Estimated number of guillemots predicted to be at risk of mortality following displacement
from the array area plus 2 km buffer in the non-breeding season (August to February)
Table 36 Estimated monthly numbers of razorbills in the array area only, and in the array area plus
2 km buffer area, based on data from 2016-2017 and 2019-2021 surveys
Table 37 Estimated numbers of additional razorbills by month in the array area based on 2016-2017
and 2019-2021 surveys40
Table 38 Estimated numbers of additional razorbills by month in the array area and 2 km buffer
based on 2016-2017 and 2019-2021 surveys40
Table 39 Estimated number of razorbills predicted to be at risk of mortality following displacement
from the array area in the breeding season (April to July)42
Table 40 Estimated number of razorbills predicted to be at risk of mortality following displacement
from the array area plus 2 buffer in the breeding season (April to July)42
Table 41 Estimated number of razorbills predicted to be at risk of mortality following displacement
from the array area in the autumn migration period of the non-breeding season (August to October)
Table 42 Estimated number of razorbills predicted to be at risk of mortality following displacement
from the array area plus 2 km buffer in the autumn migration period of the non-breeding season
(August to October)43
Table 43 Estimated number of razorbills predicted to be at risk of mortality following displacement
from the array area in the winter period of the non-breeding season (November to December)44
Table 44 Estimated number of razorbills predicted to be at risk of mortality following displacement
from the array area plus 2 km buffer in the winter period of the non-breeding season (November to
December)
Table 45 Estimated number of razorbills predicted to be at risk of mortality following displacement
from the array area in the spring migration period of the non-breeding season (January to March).45

Table 46 Estimated number of razorbills predicted to be at risk of mortality following displacement	t
from the array area plus 2 km buffer in the spring migration period of the non-breeding season	
(January to March)	45
Table 47 Estimated annual cumulative numbers of gannets predicted to be at risk of mortality	
following displacement from Tier 1, 2 and 3 projects & 2 km buffer	47
Table 48 Estimated annual cumulative numbers of kittiwakes predicted to be at risk of mortality	
following displacement from Tier 1, 2 and 3 projects & 2 km buffer	48
Table 49 Estimated annual cumulative numbers of guillemots predicted to be at risk of mortality	
following displacement from Tier 1, 2 and 3 projects & 2 km buffer	49
Table 50 Estimated annual cumulative numbers of razorbills predicted to be at risk of mortality	
following displacement from Tier 1, 2 and 3 projects & 2 km buffer	50

Acronyms

Term	Definition
BDMPS	Biologically Defined Minimum Population Scales
Km	Kilometre
NPWS	National Parks and Wildlife Service
OWEZ	Windpark Egmond aan Zee
OWF	Offshore Wind Farm
SNCBs	Statutory Nature Conservation Bodies
UK	United Kingdom

1 Introduction

- 1.1.1 The methodology for assessing displacement and barrier effects in this assessment was based on the guidance document prepared by the UK Statutory Nature Conservation Bodies (SNCBs) (SNCBs, 2022a&b). This guidance document outlines how to present assessment information on the extent and potential consequences of seabird displacement from Offshore Wind Farm (OWF) developments, and was originally produced in January 2017, with an updated version published in January 2022. This approach has been applied to assess displacement and barrier effects on seabirds for several recent offshore wind farm projects.
- 1.1.2 Displacement has been defined as 'a reduced number of birds occurring within or immediately adjacent to an offshore wind farm' (Furness *et al.*, 2013). As defined in the guidance, both flying birds and birds on the water are considered in this displacement assessment. In addition, displacement and barrier effects have been considered together in this assessment, as recommended by the guidance (SNCBs, 2022a&b).
- 1.1.3 Displacement effects for breeding seabirds are more likely to be observed as changes in productivity as opposed to survival rates (Humphreys *et al.*, 2015). Seabirds experiencing challenging conditions are more likely to abandon the current breeding attempt before compromising their own survival (Furness *et al.*, 2013), although it is likely that stressed birds could go into the wintering period in poor body condition and hence may be susceptible to higher mortality effects as a result.
- 1.1.4 There is also the potential for displacement effects to have direct consequences for wintering birds if they are displaced from high quality habitat by the presence of an offshore wind farm. In this scenario, birds may have to redistribute to poorer quality habitat which may result in poorer body condition leading to lower over-winter survival rates or potentially reduced breeding success in the subsequent year. However, it is considered that this scenario is unlikely to occur as outside the breeding season seabirds do not have to regularly return to a colony and so are able to move to greater distances to suitable foraging areas, thus avoiding displacement effects.
- 1.1.5 Depending on the season and species involved, different methods have been applied during the assessment; these are outlined further below.
- 1.1.6 The SNCB guidance recommends assessing the impacts of displacement based on the overall mean seasonal peak numbers of birds (averaged over the years of survey) in the development footprint and an appropriate buffer (SNCBs, 2022a&b). For this assessment, where possible, numbers of birds in the array area and the Buffer Area were estimated for each month, and then divided by the number of surveys undertaken for that month over the two survey periods (2016-2017 and 2019-2021) to give the mean estimated number per month (See Section 2.5). The mean peak number per season was then used for the displacement assessment.

1.1.7 Sensitivity to displacement differs considerably between seabird species. The SNCB guidance contains a table of species ranked from 1 to 5 according to their sensitivity to disturbance and also the degree of habitat specialization (with 5 being the most sensitive), based on previous reviews e.g. Furness *et al.*, (2013) and Bradbury *et al.*, (2014). This table has been reproduced here for the species that were regularly recorded on baseline surveys in the Study area (Table 1). The guidance recommends that as a general guide, any species scoring three or more under either category in Table 1, and which is present in the offshore wind farm site or buffer should be progressed to the matrix stage unless there is strong empirical evidence to the contrary. Although scores for gannet are less than three for both categories, SNCB guidance states that gannet should be included in the displacement assessment, as there are empirical studies demonstrating they are sensitive to displacement and barrier effects (e.g. Krijgsveld *et al.*, 2011, Vanermen *et al.*, 2013).

Table 1 'Disturbance Sensitivity' and 'Habitat Specialization' scores from Bradbury et al. (2014) for species th	hat
were recorded regularly on baseline surveys in the Dublin Array Study Area	

Species	Disturbance Susceptibility	Habitat Specialisation
Common Scoter	5	4
Red-throated Diver	5	4
Great Northern Diver	5	3
Cormorant	4	3
Black Guillemot	3	4
Shag	3	3
Guillemot	3	3
Razorbill	3	3
Little Tern	2	4
Sandwich Tern	2	3
Roseate Tern	2	3
Common Tern*	2	3
Arctic Tern	2	3
Puffin	2	3
Mediterranean Gull	2	2
Common Gull	2	2
Great Black-backed Gull	2	2
Kittiwake	2	2
Gannet	2	1
Lesser Black-backed gull	2	1
Herring Gull	2	1

Species	Disturbance Susceptibility	Habitat Specialisation
Black-headed Gull	1	3
Arctic Skua	1	2
Great Skua	1	2
Fulmar	1	1
Manx shearwater	1	1

* Common tern is not listed in the SNCB Guidance species sensitivity table but has been included here with the same scores as other tern species

- 1.1.8 Using this approach, it was determined that 15 species should be considered for the displacement assessment: common scoter, red-throated diver, great northern diver, cormorant, shag, black guillemot, guillemot, razorbill, puffin, black-headed gull, little tern, Sandwich tern, roseate tern, common tern and Arctic tern.
- 1.1.9 In addition, based on the NPWS response (ABPmer, 2023) to the Phase 1 East Coast Developers Methodology document submitted in December 2022 (GoBe, 2022), it was decided to include kittiwake and Manx shearwater in the displacement assessment. Although neither species have high rankings for disturbance susceptibility or habitat specialisation as defined in the SNCB guidance (SNCBs, 2022a&b), both species were assessed for potential displacement effects following the precautionary principle, as recommended in the NPWS response.
- 1.1.10 Sufficient numbers to conduct a Distance analysis were only recorded on Dublin Array baseline surveys for six species; Manx shearwater, gannet, shag, kittiwake, guillemot and razorbill. This means that it was only possible to assess displacement impacts using the SNCB approach on these six species, as the remaining species were not recorded in high enough numbers to estimate monthly numbers in the Study area.
- 1.1.11 For the remaining species, displacement impacts are assessed in the EIAR chapter using a qualitative approach, based on the numbers and distribution recorded on baseline surveys, other published survey data and available published evidence from other offshore wind farm projects. As such, they are not considered further within this report.
- 1.1.12 Seabird species that are susceptible to displacement from offshore wind farms may not only be displaced from the development footprint itself but also from the surrounding area (or buffer zone). SNCB guidance recommends that the additional area beyond the development footprint must also be considered in the displacement assessment. For the majority of species, a standard displacement buffer of two km is recommended, with a four km buffer applied for divers and sea ducks.
- 1.1.13 The SNCB guidance then recommends that the full range of potential displacement (from 0% to 100% of the mean seasonal peak bird numbers observed pre-construction) is presented within a 'Matrix Approach', using 10% intervals. These tables should be presented as array area only and array area plus an appropriate buffer. For the species within this appendix, the appropriate buffer is 2km.

- 1.1.14 Mortality of displaced adult birds is also required to be presented in the matrix approach, with the presentation of 0-100% mortality of displaced birds, again presented in 10% increments. It is also considered appropriate to have a finer gradation of percentage mortality impacts at the lower range of this scale e.g. 1% intervals between 0% and 10%. Potential reduction in productivity of breeding birds was not considered in this assessment, as recommended in the SNCB guidance, due to the lack of empirical evidence on the consequences of displacement on breeding seabirds.
- 1.1.15 The SNCB guidance also recommends that mean seasonal peak abundance is used to produce, as a minimum, two seasonal matrices covering the breeding and non-breeding seasons. For some species e.g. guillemot and razorbill, it may also be appropriate to present seasonal matrices for the post-breeding season. The definition of the breeding and non-breeding seasons was based on definitions published by Furness (2015). Where appropriate, the non-breeding season was further broken down into autumn and spring migration periods as defined in Furness (2015). Where months were listed in both breeding and non-breeding seasons, it was decided that the breeding season would take precedence, as birds are generally more sensitive to displacement effects in the breeding season, when they are typically central place foragers, tied to the breeding colony or nest.
- 1.1.16 Displacement impacts were assessed based on the peak monthly total per season in the array area and in the array area and 2 km buffer. For each species, a range of potential displacement rates is presented as matrix tables from 0% to 100% in 10% intervals), based on the mean seasonal peak estimated numbers from baseline surveys. Similarly, a range of mortality values are also presented, from 0% to 10% and then in 10% intervals to 100%.
- 1.1.17 Values are presented for the array area and the array area plus a 2 km buffer, as recommended in the SNCB guidance (2022a&b).

2 Displacement Matrices for Dublin Array

2.1 Manx Shearwater

- 2.1.1 There were sufficient sightings of Manx shearwaters on the water to run a Distance analysis on both the 2016-2017 and 2019-2021 datasets, therefore the Manx shearwater displacement assessment is based on the Distance analysis of the 2016-2017 and 2019-2021 data for birds on the water and flying birds. A more detailed breakdown of monthly numbers of birds on the water and in flight is presented in the Offshore and Intertidal Ornithology Technical Baseline. The breeding season for Manx shearwater has been defined as April to August (Furness, 2015). Furness (2015) considered that in addition to the breeding season there were two biologically defined minimum population scales (BDMPS) periods for Manx shearwater; autumn migration (August to early October) and spring migration (late March to May).
- 2.1.2 Monthly peak estimated numbers of Manx shearwaters in the array area and the array area plus 2 km buffer between January and December are presented in Table 2. In the breeding season (April to August), the peak mean estimated number of Manx shearwaters in the array area was 794 birds in April, while the peak mean estimated number of Manx shearwaters in the array area plus the 2 km buffer was 2,198 birds in April.

	J	F	Μ	Α	Μ	J	J	Α	S	0	Ν	D			
Array area only	Array area only														
Lower	0	0	0	317	42	109	107	6	52	0	0	0			
Mean	0	0	2	794	114	241	270	37	96	0	0	0			
Upper	0	0	6	1,966	295	526	679	198	159	0	0	0			
Array area & 2 ki	n Buf	fer													
Lower	0	0	1	881	99	320	292	51	86	0	0	0			
Mean	0	0	4	2,198	293	682	733	148	176	2	0	0			
Upper	0	0	16	5,403	785	1,464	1,834	587	312	5	0	0			

Table 2 Estimated monthly numbers of Manx shearwaters in the array area only, and in the array area plus2 km buffer area, based on data from 2016-2017 and 2019-2021 surveys

- 2.1.3 In the autumn migration period of the non-breeding season (September to early October), mean estimated numbers were lower, with a peak mean estimated number of 96 birds in the array area in September. In the array area and 2 km buffer, the peak mean estimated number of Manx shearwaters was 176 birds in September (Table 2).
- 2.1.4 In the spring migration period of the non-breeding season (late March), mean estimated numbers were much lower, with a peak mean estimated number of two birds in the array area in March. In the array area and 2 km buffer, the peak mean estimated number of Manx shearwaters was four birds in March (Table 2).

- 2.1.5 These peak estimated means were taken as the maximum number of Manx shearwaters in the array area and the array area and 2 km buffer for the breeding and non-breeding seasons. These figures were then used in the Displacement matrices produced for this assessment (Table 3 to Table 8).
- 2.1.6 Post-construction studies in Europe indicate that Manx shearwaters may be likely to exhibit weak avoidance of offshore wind farms. Dierschke *et al.* (2016) concluded that although Manx shearwaters have been observed inside operating wind farms in the Celtic Sea, there is limited data on this species. Bradbury *et al.*, (2014) ranked Manx shearwater as having "very low" population vulnerability to displacement.
- 2.1.7 The lack of available evidence of displacement effects was also highlighted in a recent review of the risk of collision and displacement in petrels and shearwaters from offshore wind developments in Scotland (Deakin, *et al.*, 2022). This review concluded that while Manx shearwaters are generally thought to have a low vulnerability to displacement and barrier effects, there is the potential for displacement effects to occur.
- 2.1.8 Based on the limited available evidence from existing offshore wind farm studies, and published reviews indicating a weak avoidance of offshore wind farms, it has been assumed for this assessment that 30% of Manx shearwaters will be displaced from the array area. Although displacement is considered likely to be less than 30% for Manx shearwaters in the surrounding 2 km buffer area, it has also been assumed that 30% of Manx shearwaters will be displaced from the 2 km buffer area. The 30% displacement row has been highlighted in Table 3 to Table 8.
- 2.1.9 Based on the species very large foraging range and the likely weak avoidance of offshore wind farms, it is considered unlikely that there will be any mortality resulting from displacement from the array area and the 2 km buffer, as displaced birds would be able to forage elsewhere in the Irish Sea. However, for the purposes of this assessment, it has been assumed that 1% of all displaced birds from the array area and a 2 km buffer will suffer mortality as a consequence of being displaced.
- 2.1.10 Mortality rates of 1% to 100% are presented in Table 3 to Table 8, with the assessment mortality rate of 1% highlighted.

		Mortality (%)																		
	%	1	2	3	4	5	6	7	8	9	10	20	30	40	50	60	70	80	90	100
	10	1	2	2	3	4	5	6	6	7	8	16	24	32	40	48	56	64	71	79
	20	2	3	5	6	8	10	11	13	14	16	32	48	64	79	95	111	127	143	159
	30	2	5	7	10	12	14	17	19	21	24	48	71	95	119	143	167	191	214	238
t (%	40	3	6	10	13	16	19	22	25	29	32	64	95	127	159	191	222	254	286	318
men	50	4	8	12	16	20	24	28	32	36	40	79	119	159	199	238	278	318	357	397
lace	60	5	10	14	19	24	29	33	38	43	48	95	143	191	238	286	333	381	429	476
Disp	70	6	11	17	22	28	33	39	44	50	56	111	167	222	278	333	389	445	500	556
	80	6	13	19	25	32	38	44	51	57	64	127	191	254	318	381	445	508	572	635
	90	7	14	21	29	36	43	50	57	64	71	143	214	286	357	429	500	572	643	715
	100	8	16	24	32	40	48	56	64	71	79	159	238	318	397	476	556	635	715	794

Table 3 Estimated number of Manx shearwaters predicted to be at risk of mortality following displacement from the array area in the breeding season (April to August)

Table 4 Estimated number of Manx shearwaters predicted to be at risk of mortality following displacement from the array area plus 2 km buffer in the breeding season (April to August)

		Mortality (%)																		
	%	1	2	3	4	5	6	7	8	9	10	20	30	40	50	60	70	80	90	100
	10	2	4	7	9	11	13	15	18	20	22	44	66	88	110	132	154	176	198	220
	20	4	9	13	18	22	26	31	35	40	44	88	132	176	220	264	308	352	396	440
	30	7	13	20	26	33	40	46	53	59	66	132	198	264	330	396	462	528	593	659
t (%)	40	9	18	26	35	44	53	62	70	79	88	176	264	352	440	528	615	703	791	879
men	50	11	22	33	44	55	66	77	88	99	110	220	330	440	550	659	769	879	989	1,099
acei	60	13	26	40	53	66	79	92	106	119	132	264	396	528	659	791	923	1,055	1,187	1,319
Displ	70	15	31	46	62	77	92	108	123	138	154	308	462	615	769	923	1,077	1,231	1,385	1,539
	80	18	35	53	70	88	106	123	141	158	176	352	528	703	879	1,055	1,231	1,407	1,583	1,758
	90	20	40	59	79	99	119	138	158	178	198	396	593	791	989	1,187	1,385	1,583	1,780	1,978
	100	22	44	66	88	110	132	154	176	198	220	440	659	879	1,099	1,319	1,539	1,758	1,978	2,198

										Mortali	ty (%)									
	%	1	2	3	4	5	6	7	8	9	10	20	30	40	50	60	70	80	90	100
	10	0	0	0	0	0	1	1	1	1	1	2	3	4	5	6	7	8	9	10
	20	0	0	1	1	1	1	1	2	2	2	4	6	8	10	12	13	15	17	19
	30	0	1	1	1	1	2	2	2	3	3	6	9	12	14	17	20	23	26	29
t (%	40	0	1	1	2	2	2	3	3	3	4	8	12	15	19	23	27	31	35	38
men	50	0	1	1	2	2	3	3	4	4	5	10	14	19	24	29	34	38	43	48
lace	60	1	1	2	2	3	3	4	5	5	6	12	17	23	29	35	40	46	52	58
Jisp	70	1	1	2	3	3	4	5	5	6	7	13	20	27	34	40	47	54	60	67
	80	1	2	2	3	4	5	5	6	7	8	15	23	31	38	46	54	61	69	77
	90	1	2	3	3	4	5	6	7	8	9	17	26	35	43	52	60	69	78	86
	100	1	2	3	4	5	6	7	8	9	10	19	29	38	48	58	67	77	86	96

Table 5 Estimated number of Manx shearwaters predicted to be at risk of mortality following displacement from the array area in the autumn migration period of the non-breeding season (September to early October)

Table 6 Estimated number of Manx shearwaters predicted to be at risk of mortality following displacement from the array area plus 2 km buffer in the autumn migration period of the non-breeding season (September to early October)

										Mortali	ty (%)									
	%	1	2	3	4	5	6	7	8	9	10	20	30	40	50	60	70	80	90	100
	10	0	0	1	1	1	1	1	1	2	2	4	5	7	9	11	12	14	16	18
	20	0	1	1	1	2	2	2	3	3	4	7	11	14	18	21	25	28	32	35
	30	1	1	2	2	3	3	4	4	5	5	11	16	21	26	32	37	42	48	53
t (%	40	1	1	2	3	4	4	5	6	6	7	14	21	28	35	42	49	56	63	70
men	50	1	2	3	4	4	5	6	7	8	9	18	26	35	44	53	62	70	79	88
lace	60	1	2	3	4	5	6	7	8	10	11	21	32	42	53	63	74	84	95	106
Disp	70	1	2	4	5	6	7	9	10	11	12	25	37	49	62	74	86	99	111	123
	80	1	3	4	6	7	8	10	11	13	14	28	42	56	70	84	99	113	127	141
	90	2	3	5	6	8	10	11	13	14	16	32	48	63	79	95	111	127	143	158
	100	2	4	5	7	9	11	12	14	16	18	35	53	70	88	106	123	141	158	176

										Mortali	ty (%)									
	%	1	2	3	4	5	6	7	8	9	10	20	30	40	50	60	70	80	90	100
	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
t (%	40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
men	50	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
lace	60	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Disp	70	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1
	80	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	2
	90	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	2	2
	100	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	2	2	2

Table 7 Estimated number of Manx shearwaters predicted to be at risk of mortality following displacement from the array area in the spring migration period of the non-breeding season (late March)

Table 8 Estimated number of Manx shearwaters predicted to be at risk of mortality following displacement from the array area plus 2 km buffer in the spring migration period of the non-breeding season (late March)

										Mortali	ty (%)									
	%	1	2	3	4	5	6	7	8	9	10	20	30	40	50	60	70	80	90	100
	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
$\overline{}$	30	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
t (%	40	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	2
men	50	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	2	2	2
lace	60	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	2	2	2	2
Disp	70	0	0	0	0	0	0	0	0	0	0	1	1	1	1	2	2	2	3	3
	80	0	0	0	0	0	0	0	0	0	0	1	1	1	2	2	2	3	3	3
	90	0	0	0	0	0	0	0	0	0	0	1	1	1	2	2	3	3	3	4
	100	0	0	0	0	0	0	0	0	0	0	1	1	2	2	2	3	3	4	4

2.2 Gannet

- 2.2.1 There were insufficient sightings of gannets on the water in the 2016-2017 dataset to run a Distance analysis, therefore the gannet displacement assessment is based only on the Distance analysis of the 2019-2021 data for birds on the water, and 2016-2017 and 2019-2021 datasets for flying birds. A more detailed breakdown of monthly numbers of birds on the water and in flight is presented in the Offshore and Intertidal Ornithology Technical Baseline. The breeding season for gannet has been defined as March to September, (Furness, 2015).
- 2.2.2 Monthly peak estimated numbers of gannets in the array area and array area plus two km buffer between January and December are presented in Table 9. In the breeding season (March to September), the peak mean estimated number of gannets in the array area was 245 birds in May, while the peak mean estimated number of gannets in the array area plus the 2 km buffer was 700 birds in May.

	J	F	Μ	Α	Μ	J	J	Α	S	0	Ν	D
Array area only												
Lower	0	0	4	32	113	31	41	17	11	3	1	5
Mean	8	7	17	88	245	74	94	38	37	10	4	15
Upper	22	16	54	221	572	157	208	74	115	22	14	37
Array area & 2 km	Buffe	r										
Lower	0	0	15	107	315	80	113	40	29	6	3	8
Mean	9	15	49	269	700	180	259	92	99	21	10	27
Upper	25	36	147	637	1,627	379	567	185	306	49	37	77

Table 9 Estimated monthly numbers of gannets in the array area only, and in the array area plus 2 km buffer area, based on data from 2016-2017 and 2019-2021 surveys

- 2.2.3 In the autumn migration period of the non-breeding season (October to November), mean estimated numbers were much lower, with a peak mean estimated number of 10 birds in the array area in October. In the array area and 2 km buffer, the peak mean estimated number of gannets was 21 birds in October (Table 9).
- 2.2.4 In the spring migration period of the non-breeding season (December to February), mean estimated numbers were also much lower, with a peak mean estimated number of 15 birds in the array area in December. In the array area and 2 km buffer, the peak mean estimated number of gannets was 27 birds in December (Table 9).
- 2.2.5 These peak estimated means were taken as the maximum number of gannets in the array area and the array area and 2 km buffer for the breeding and non-breeding seasons. These figures were then used in the Displacement matrices produced for this assessment (Table 10 to Table 15).

- 2.2.6 Post-construction studies in Europe indicate that gannets are likely to exhibit a high degree of avoidance of offshore wind farms. A detailed study using radar and visual observations to monitor the post-construction effects of the Windpark Egmond aan Zee (OWEZ) offshore wind farm in the Netherlands established that 64% of gannets avoided entering the wind farm (Krijgsveld *et al.*, 2011). A similar result (80% macro avoidance) was observed during a study at the Thanet wind farm in the UK (Skov *et al.*, 2018). Leopold *et al.* (2013) reported that most gannets avoided Dutch offshore wind farms and did not forage within the turbine areas. Dierschke *et al.* (2016) concluded that gannets show high avoidance of offshore wind farms despite showing little avoidance of ships.
- 2.2.7 Results from the first year of post-construction studies at the Beatrice OWF site in the Moray Firth agreed with previous studies, with gannets demonstrating a high degree of wind turbine avoidance. Statistical analysis showed that while there was no evidence for an overall change in abundance in the study area, there was a very strong and significant spatial effect, with a decline centred on the wind farm. This spatial modelling backed up the more simplistic observations of gannets avoiding the wind farm derived from post-construction digital aerial survey data (MacArthur Green, 2023).
- 2.2.8 Recent guidance for OWF projects in Scottish waters recommended that a displacement rate of 70% should be used for gannet (Nature Scot, 2023). Based on this, and on available evidence from existing offshore wind farm studies, it has been assumed for this assessment that 70% of gannets will be displaced from the array area. Although displacement is considered likely to be less than 70% for gannets in the surrounding 2 km buffer area, it has also been assumed that 70% of gannets will be displaced from the 2 km buffer area. The 60%-80% displacement rows have been highlighted in Table 10 to Table 15, in line with the agreed east coast method statement (GoBe, 2022), with a displacement rate of 70% displacement being taken through the assessment.
- 2.2.9 Recent Scoping guidance for OWF projects in Scottish waters recommended that mortality rates of 1% and 3% throughout the year should be used for gannet in displacement assessments (NatureScot, 2023).
- 2.2.10 However, studies on foraging gannets have shown that they are capable of extending their foraging distances in response to prey distribution, indicating that birds would easily absorb the minor increases in flight distances that a barrier such as an offshore wind farm could cause (Hamer *et al.*, 2007; Hamer *et al.*, 2011). In addition, this species was rated as having a low sensitivity to barrier effects by Maclean *et al.* (2009) and Langston (2010). A review by Furness and Wade (2012) concluded that gannets use a wide range of habitats over a large area, usually with a relatively wide range of prey species, and therefore have a high flexibility of habitat use.
- 2.2.11 In addition, a recent review of gannet displacement and mortality based on evidence from 25 OWFs recommended that a maximum rate of 1% mortality should be used for assessing potential impacts associated with displacement for gannets from OWFs (APEM, 2022).

- 2.2.12 Based on the above, it is considered unlikely that there will be any mortality resulting from displacement from the array area and the 2 km buffer, as displaced birds would be able to forage elsewhere in the Irish Sea. However, for the purposes of this assessment, it has been assumed that 1% of all displaced birds from the array area and a 2 km buffer will suffer mortality as a consequence of being displaced.
- 2.2.13 Mortality rates of 1% to 100% are presented in Table 10 to Table 15, with the assessment mortality rate of 1% highlighted.

.

										Mortali	ty (%)									
	%	1	2	3	4	5	6	7	8	9	10	20	30	40	50	60	70	80	90	100
	10	0	0	1	1	1	1	2	2	2	2	5	7	10	12	15	17	20	22	25
	20	0	1	1	2	2	3	3	4	4	5	10	15	20	25	29	34	39	44	49
	30	1	1	2	3	4	4	5	6	7	7	15	22	29	37	44	51	59	66	74
t (%)	40	1	2	3	4	5	6	7	8	9	10	20	29	39	49	59	69	78	88	98
men.	50	1	2	4	5	6	7	9	10	11	12	25	37	49	61	74	86	98	110	123
lacel	60	1	3	4	6	7	9	10	12	13	15	29	44	59	74	88	103	118	132	147
Disp	70	2	3	5	7	9	10	12	14	15	17	34	51	69	86	103	120	137	154	172
	80	2	4	6	8	10	12	14	16	18	20	39	59	78	98	118	137	157	176	196
	90	2	4	7	9	11	13	15	18	20	22	44	66	88	110	132	154	176	198	221
	100	2	5	7	10	12	15	17	20	22	25	49	74	98	123	147	172	196	221	245

Table 10 Estimated number of gannets predicted to be at risk of mortality following displacement from the array area in the breeding season (March to September)

Table 11 Estimated number of gannets predicted to be at risk of mortality following displacement from the array area plus 2 buffer in the breeding season (March to September)

										Mortal	ity (%)									
	%	1	2	3	4	5	6	7	8	9	10	20	30	40	50	60	70	80	90	100
	10	1	1	2	3	4	4	5	6	6	7	14	21	28	35	42	49	56	63	70
	20	1	3	4	6	7	8	10	11	13	14	28	42	56	70	84	98	112	126	140
	30	2	4	6	8	11	13	15	17	19	21	42	63	84	105	126	147	168	189	210
t (%	40	3	6	8	11	14	17	20	22	25	28	56	84	112	140	168	196	224	252	280
men	50	4	7	11	14	18	21	25	28	32	35	70	105	140	175	210	245	280	315	350
lace	60	4	8	13	17	21	25	29	34	38	42	84	126	168	210	252	294	336	378	420
Jisp	70	5	10	15	20	25	29	34	39	44	49	98	147	196	245	294	343	392	441	490
	80	6	11	17	22	28	34	39	45	50	56	112	168	224	280	336	392	448	504	560
	90	6	13	19	25	32	38	44	50	57	63	126	189	252	315	378	441	504	567	630
	100	7	14	21	28	35	42	49	56	63	70	140	210	280	350	420	490	560	630	700

										Mortali	ty (%)									
	%	1	2	3	4	5	6	7	8	9	10	20	30	40	50	60	70	80	90	100
	10	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
	20	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	2	2	2
	30	0	0	0	0	0	0	0	0	0	0	1	1	1	2	2	2	2	3	3
t (%)	40	0	0	0	0	0	0	0	0	0	0	1	1	2	2	2	3	3	4	4
men	50	0	0	0	0	0	0	0	0	0	1	1	2	2	3	3	4	4	5	5
lace	60	0	0	0	0	0	0	0	0	1	1	1	2	2	3	4	4	5	5	6
Disp	70	0	0	0	0	0	0	0	1	1	1	1	2	3	4	4	5	6	6	7
	80	0	0	0	0	0	0	1	1	1	1	2	2	3	4	5	6	6	7	8
	90	0	0	0	0	0	1	1	1	1	1	2	3	4	5	5	6	7	8	9
	100	0	0	0	0	1	1	1	1	1	1	2	3	4	5	6	7	8	9	10

Table 12 Estimated number of gannets predicted to be at risk of mortality following displacement from the array area in the autumn migration period of the non-breeding season (October to November)

Table 13 Estimated number of gannets predicted to be at risk of mortality following displacement from the array area plus 2 km buffer in the autumn migration period of the non-breeding season (October to November)

										Mortali	ty (%)									
	%	1	2	3	4	5	6	7	8	9	10	20	30	40	50	60	70	80	90	100
	10	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	2	2	2
	20	0	0	0	0	0	0	0	0	0	0	1	1	2	2	3	3	3	4	4
	30	0	0	0	0	0	0	0	1	1	1	1	2	3	3	4	4	5	6	6
t (%)	40	0	0	0	0	0	1	1	1	1	1	2	3	3	4	5	6	7	8	8
men	50	0	0	0	0	1	1	1	1	1	1	2	3	4	5	6	7	8	9	11
lacel	60	0	0	0	1	1	1	1	1	1	1	3	4	5	6	8	9	10	11	13
Disp	70	0	0	0	1	1	1	1	1	1	1	3	4	6	7	9	10	12	13	15
	80	0	0	1	1	1	1	1	1	2	2	3	5	7	8	10	12	13	15	17
	90	0	0	1	1	1	1	1	2	2	2	4	6	8	9	11	13	15	17	19
	100	0	0	1	1	1	1	1	2	2	2	4	6	8	11	13	15	17	19	21

										Mortali	ty (%)									
	%	1	2	3	4	5	6	7	8	9	10	20	30	40	50	60	70	80	90	100
	10	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	2
	20	0	0	0	0	0	0	0	0	0	0	1	1	1	2	2	2	2	3	3
	30	0	0	0	0	0	0	0	0	0	0	1	1	2	2	3	3	4	4	5
t (%)	40	0	0	0	0	0	0	0	0	1	1	1	2	2	3	4	4	5	5	6
men	50	0	0	0	0	0	0	1	1	1	1	2	2	3	4	5	5	6	7	8
lace	60	0	0	0	0	0	1	1	1	1	1	2	3	4	5	5	6	7	8	9
Disp	70	0	0	0	0	1	1	1	1	1	1	2	3	4	5	6	7	8	9	11
	80	0	0	0	0	1	1	1	1	1	1	2	4	5	6	7	8	10	11	12
	90	0	0	0	1	1	1	1	1	1	1	3	4	5	7	8	9	11	12	14
	100	0	0	0	1	1	1	1	1	1	2	3	5	6	8	9	11	12	14	15

Table 14 Estimated number of gannets predicted to be at risk of mortality following displacement from the array area in the spring migration period of the non-breeding season (December to February)

Table 15 Estimated number of gannets predicted to be at risk of mortality following displacement from the array area plus 2 km buffer in the spring migration period of the non-breeding season (December to February)

										Mortali	ty (%)									
	%	1	2	3	4	5	6	7	8	9	10	20	30	40	50	60	70	80	90	100
	10	0	0	0	0	0	0	0	0	0	0	1	1	1	1	2	2	2	2	3
	20	0	0	0	0	0	0	0	0	0	1	1	2	2	3	3	4	4	5	5
	30	0	0	0	0	0	0	1	1	1	1	2	2	3	4	5	6	6	7	8
t (%)	40	0	0	0	0	1	1	1	1	1	1	2	3	4	5	6	8	9	10	11
men	50	0	0	0	1	1	1	1	1	1	1	3	4	5	7	8	9	11	12	14
lacel	60	0	0	0	1	1	1	1	1	1	2	3	5	6	8	10	11	13	15	16
Disp	70	0	0	1	1	1	1	1	2	2	2	4	6	8	9	11	13	15	17	19
	80	0	0	1	1	1	1	2	2	2	2	4	6	9	11	13	15	17	19	22
	90	0	0	1	1	1	1	2	2	2	2	5	7	10	12	15	17	19	22	24
	100	0	1	1	1	1	2	2	2	2	3	5	8	11	14	16	19	22	24	27

2.3 Shag

- 2.3.1 There were sufficient sightings of shags on the water to run a Distance analysis on both the 2016-2017 and 2019-2021 datasets, therefore the shag displacement assessment is based on the Distance analysis of the 2016-2017 and 2019-2021 data for birds on the water and flying birds. A more detailed breakdown of monthly numbers of birds on the water and in flight is presented in the Offshore and Intertidal Ornithology Technical Baseline. The breeding season for shag has been defined as February to August (Furness, 2015), and this period has been used, on the basis that there is a large variation in the breeding season for this species.
- 2.3.2 Monthly peak estimated numbers of shags in the array area and array area plus 2 km buffer between January and December are presented in Table 16. In the breeding season (February to August), the peak mean estimated number of shags in the array area was 156 birds in August, while the peak mean estimated number of shags in the array area plus the 2 km buffer was 295 birds in July.

	J	F	Μ	Α	Μ	J	J	Α	S	0	Ν	D
Array area only												
Lower	18	22	44	32	23	48	57	74	84	73	91	62
Mean	48	55	93	59	57	98	152	156	204	163	231	141
Upper	113	133	204	106	131	216	393	332	500	344	576	343
Array area & 2 km	Buffe	r										
Lower	26	38	74	49	35	86	116	130	127	113	148	106
Mean	72	93	158	85	85	175	295	275	321	248	373	247
Upper	182	224	346	153	202	377	723	582	808	535	942	597

Table 16 Estimated monthly numbers of shags in the array area only, and in the array area plus 2 km buffer area, based on data from 2016-2017 and 2019-2021 surveys

- 2.3.3 In the non-breeding season (September to January), mean estimated numbers were higher, with a peak mean estimated number of 231 birds in the array area in November. In the array area and 2 km buffer, the peak mean estimated number of shags was 373 birds in November (Table 16).
- 2.3.4 These peak estimated means were taken as the maximum number of shags in the array area and the array area and 2 km buffer for the breeding and non-breeding seasons. These figures were then used in the Displacement matrices produced for this assessment (Table 17 to Table 20).
- 2.3.5 The SNCBs guidance (2022a&b) states that 'Disturbance Susceptibility' scores can be used to determine the appropriate displacement levels on a species-by-species basis. For example, for guillemots and razorbills, the SNCBs would typically advise a displacement level of 30-70% (both species have a 'Disturbance Susceptibility' score of 3, based on Bradbury *et al.*, 2014).

- 2.3.6 However, recent guidance for OWF projects in Scottish waters recommended a displacement level of 60% for guillemot and razorbill (NatureScot, 2023). This upper limit of 60% displacement could therefore be applied to shags, as all three species have a 'Disturbance Susceptibility' score of 3, based on Bradbury *et al.*, (2014). Similarly, JNCC have recommended a displacement level of 40-60% for shags (Busch *et al.*, 2015).
- 2.3.7 Based on these approaches, a range of 40-60% displacement effects has been applied for shags in Table 17 to Table 20. This is considered to be precautionary, given the existing but limited evidence of potential attraction to offshore wind farms for this species.
- 2.3.8 Although, displacement effects are likely to be lower for birds in the 2 km buffer area around the array area, for this assessment it has also been assumed that 40-60% of shags will be displaced from the 2 km buffer area.
- 2.3.9 The SNCB guidance does not recommend a specific mortality level to apply for shags in their displacement assessment guidance. The guidance does however suggest that the 'Habitat Specialisation' score from Bradbury *et al.*, (2014) can be useful, when combined with expert opinion, as to the likely range of possible mortality impacts resulting from particular levels of displacement. The habitat specialisation score for shag was three per Bradbury *et al.*, (2014), on a scale of one to five, where five was considered strong anticipated negative impact. Guillemot and razorbill were also given a habitat specialisation score of three by Bradbury *et al.*, (2014). As these three species have the same habitat specialisation score, the same mortality rate of 1% recommended by APEM (2022) for guillemot and razorbill has been applied for shag in this assessment.
- 2.3.10 Therefore, for the purposes of this assessment, a displacement rate range of 40 to 60% and a mortality rate of 1% are highlighted in each matrix, with the 60% / 1% combination representing a precautionary worst-case scenario. The same scenarios have also been applied for the Array Area plus 2 km buffer.
- 2.3.11 Mortality rates of 1% to 100% are presented in Table 17 to Table 20, with the assessment mortality rate of 1% highlighted.

										Mortali	ty (%)									
	%	1	2	3	4	5	6	7	8	9	10	20	30	40	50	60	70	80	90	100
	10	0	0	0	1	1	1	1	1	1	2	3	5	6	8	9	11	12	14	16
	20	0	1	1	1	2	2	2	2	3	3	6	9	12	16	19	22	25	28	31
	30	0	1	1	2	2	3	3	4	4	5	9	14	19	23	28	33	37	42	47
t (%)	40	1	1	2	2	3	4	4	5	6	6	12	19	25	31	37	44	50	56	62
men	50	1	2	2	3	4	5	5	6	7	8	16	23	31	39	47	55	62	70	78
lacel	60	1	2	3	4	5	6	7	7	8	9	19	28	37	47	56	66	75	84	94
Disp	70	1	2	3	4	5	7	8	9	10	11	22	33	44	55	66	76	87	98	109
	80	1	2	4	5	6	7	9	10	11	12	25	37	50	62	75	87	100	112	125
	90	1	3	4	6	7	8	10	11	13	14	28	42	56	70	84	98	112	126	140
	100	2	3	5	6	8	9	11	12	14	16	31	47	62	78	94	109	125	140	156

Table 17 Estimated number of shags predicted to be at risk of mortality following displacement from the array area in the breeding season (February to August)

Table 18 Estimated number of shags predicted to be at risk of mortality following displacement from the array area plus 2 buffer in the breeding season (February to August)

										Mortal	ity (%)									
	%	1	2	3	4	5	6	7	8	9	10	20	30	40	50	60	70	80	90	100
	10	0	1	1	1	1	2	2	2	3	3	6	9	12	15	18	21	24	27	30
	20	1	1	2	2	3	4	4	5	5	6	12	18	24	30	35	41	47	53	59
-	30	1	2	3	4	4	5	6	7	8	9	18	27	35	44	53	62	71	80	89
t (%)	40	1	2	4	5	6	7	8	9	11	12	24	35	47	59	71	83	94	106	118
men	50	1	3	4	6	7	9	10	12	13	15	30	44	59	74	89	103	118	133	148
lacel	60	2	4	5	7	9	11	12	14	16	18	35	53	71	89	106	124	142	159	177
Disp	70	2	4	6	8	10	12	14	17	19	21	41	62	83	103	124	145	165	186	207
	80	2	5	7	9	12	14	17	19	21	24	47	71	94	118	142	165	189	212	236
	90	3	5	8	11	13	16	19	21	24	27	53	80	106	133	159	186	212	239	266
	100	3	6	9	12	15	18	21	24	27	30	59	89	118	148	177	207	236	266	295

										Mortali	ity (%)									
	%	1	2	3	4	5	6	7	8	9	10	20	30	40	50	60	70	80	90	100
	10	0	0	1	1	1	1	2	2	2	2	5	7	9	12	14	16	18	21	23
	20	0	1	1	2	2	3	3	4	4	5	9	14	18	23	28	32	37	42	46
	30	1	1	2	3	3	4	5	6	6	7	14	21	28	35	42	49	55	62	69
t (%)	40	1	2	3	4	5	6	6	7	8	9	18	28	37	46	55	65	74	83	92
nen.	50	1	2	3	5	6	7	8	9	10	12	23	35	46	58	69	81	92	104	116
lacel	60	1	3	4	6	7	8	10	11	12	14	28	42	55	69	83	97	111	125	139
Disp	70	2	3	5	6	8	10	11	13	15	16	32	49	65	81	97	113	129	146	162
	80	2	4	6	7	9	11	13	15	17	18	37	55	74	92	111	129	148	166	185
	90	2	4	6	8	10	12	15	17	19	21	42	62	83	104	125	146	166	187	208
	100	2	5	7	9	12	14	16	18	21	23	46	69	92	116	139	162	185	208	231

Table 19 Estimated number of shags predicted to be at risk of mortality following displacement from the array area in the non-breeding season (September to January)

Table 20 Estimated number of shags predicted to be at risk of mortality following displacement from the array area plus 2 km buffer in the non-breeding season (September to January)

										Mortali	ty (%)									
	%	1	2	3	4	5	6	7	8	9	10	20	30	40	50	60	70	80	90	100
	10	0	1	1	1	2	2	3	3	3	4	7	11	15	19	22	26	30	34	37
	20	1	1	2	3	4	4	5	6	7	7	15	22	30	37	45	52	60	67	75
-	30	1	2	3	4	6	7	8	9	10	11	22	34	45	56	67	78	90	101	112
t (%)	40	1	3	4	6	7	9	10	12	13	15	30	45	60	75	90	104	119	134	149
men	50	2	4	6	7	9	11	13	15	17	19	37	56	75	93	112	131	149	168	187
lace	60	2	4	7	9	11	13	16	18	20	22	45	67	90	112	134	157	179	201	224
Disp	70	3	5	8	10	13	16	18	21	23	26	52	78	104	131	157	183	209	235	261
	80	3	6	9	12	15	18	21	24	27	30	60	90	119	149	179	209	239	269	298
	90	3	7	10	13	17	20	23	27	30	34	67	101	134	168	201	235	269	302	336
	100	4	7	11	15	19	22	26	30	34	37	75	112	149	187	224	261	298	336	373

2.4 Kittiwake

- 2.4.1 There were sufficient sightings of kittiwakes on the water to run a Distance analysis on both the 2016-2017 and 2019-2021 datasets, therefore the kittiwake displacement assessment is based on the Distance analysis of the 2016-2017 and 2019-2021 data for birds on the water and flying birds. A more detailed breakdown of monthly numbers of birds on the water and in flight is presented in the Offshore and Intertidal Ornithology Technical Baseline. The breeding season for kittiwake has been defined as March to August, although May to July is considered the "migration free" breeding season (Furness, 2015), and that has been applied for the displacement assessment. Furness (2015) considered that for kittiwake outside the breeding season there were two BDMPS periods; autumn migration (August to December) and spring migration (January to April).
- 2.4.2 Monthly peak estimated numbers of kittiwakes in the array area and the array area plus 2 km buffer between January and December are presented in Table 21.

	J	F	Μ	Α	Μ	J	J	Α	S	0	Ν	D
Array a	area onl	у										
Lower	32	23	112	151	72	76	36	86	100	26	81	104
Mean	70	72	247	314	153	191	78	204	227	95	246	268
Upper	157	181	528	651	322	470	153	473	551	333	735	701
Array a	area ano	d 2 km	Buffer									
Lower	50	42	324	411	202	284	136	202	212	111	221	274
Mean	130	137	709	850	485	622	247	470	538	387	666	749
Upper	328	386	1,506	1,756	1,053	1,405	437	1,108	1,394	1,116	1,979	1,965

Table 21 Estimated monthly numbers of kittiwakes in the array area only, and in the array area plus 2 km buffer area, based on data from 2016-2017 and 2019-2021 surveys

- 2.4.3 In the migration-free breeding season (May to July), the peak mean estimated number of kittiwakes in the array area was 191 birds in May, while the peak mean estimated number of kittiwakes in the array area plus 2 km buffer was 622 birds in May (Table 21).
- 2.4.4 In the autumn migration period of the non-breeding season (August to December), mean estimated numbers of kittiwakes were slightly higher, with a peak mean estimated number of 268 birds in the array area in December. In the array area and 2 km buffer, the peak mean estimated number of kittiwakes in the autumn migration period was 749 birds in December (Table 21).
- 2.4.5 In the spring migration period of the non-breeding season (January to April), mean estimated numbers of kittiwakes reached a peak mean estimated number of 314 birds in the array area in April. In the array area and 2 km buffer, the peak mean estimated number of kittiwakes in the spring migration period was 850 birds in April (Table 21).

- 2.4.6 These revised peak estimated means were taken as the maximum number of kittiwakes in the array area and in the array area and 2 km buffer for the breeding and non-breeding seasons and were used in the displacement matrices produced for this assessment (Table 22 to Table 27).
- 2.4.7 There is evidence from other operating OWF projects that displacement of kittiwakes is not likely to occur to any significant level. A review of post-construction studies of seabirds at OWFs in European waters concluded that kittiwake was one of the species which were hardly affected by OWFs or with attraction and avoidance approximately equal over all studies (Dierschke *et al.*, 2016).
- 2.4.8 More recently, post-construction monitoring studies at Beatrice OWF concluded that there was no overall significant change in kittiwake abundance between pre-construction and post-construction surveys. Within the wind farm, kittiwakes were more abundant on post-construction surveys than on pre-construction surveys. Results from spatial modelling of the pre and post-construction survey data indicated that there was a significant redistribution effect for kittiwakes, but no overall change in abundance (MacArthur Green, 2021).
- 2.4.9 Analysis was also conducted of the distribution of kittiwakes within Beatrice OWF, comparing the observed bird densities around turbines with randomised alternative turbine locations, to determine if the observed bird locations are related to turbine locations. This analysis was conducted independently on the data from both post-construction years (2019 and 2021) and also took rotor speed into account. The results of the analysis showed that kittiwakes did not avoid turbines at Beatrice OWF, irrespective of the turbine operational status (MacArthur Green, 2023).
- 2.4.10 Recent guidance from NatureScot for OWF projects in Scottish waters recommended that a displacement rate of 30% should be used for kittiwake (NatureScot, 2023). Although there is evidence from operating OWF projects that kittiwake displacement is not likely to occur to any significant level, a displacement rate of 30% has therefore been used in this assessment.
- 2.4.11 However, it should be noted that based on available evidence from operating OWF projects, this level of displacement is considered very precautionary. A recent post-construction study at Beatrice Offshore Wind Farm in the Moray Firth concluded that there was no displacement effect for kittiwake, with no significant differences observed between mean density of birds and expected density (Trinder *et al.*, 2024).

- 2.4.12 Recent NatureScot guidance for OWF projects in Scottish waters recommended that mortality rates of 1% and 3% should be used for kittiwake in the breeding and non-breeding seasons (NatureScot, 2023). However, there is no current evidence that kittiwake have suffered mortality from displacement from windfarms. SNCB guidance suggests that the 'Habitat Specialisation' score from Bradbury *et al.* (2014) can be useful, when combined with expert opinion, as to the likely range of possible mortality impacts resulting from particular levels of displacement. The habitat specialisation score for kittiwake was 2 per Bradbury *et al.* (2014), lower than both guillemot and razorbill. As this species has a lower habitat specialisation score, the same mortality rate of 1% recommended by APEM (2022) for guillemot and razorbill has been applied for kittiwake in this assessment, noting this is likely precautionary based on the habitat specialisation score. Moreover, a recent study at Beatrice OWF shows there is also a lack of evidence of displacement (MacArthur Green, 2023, Trinder *et al.*, 2024). Therefore, a mortality rate of 1% has been applied for kittiwake in this assessment similarly to the rates suggested for auks in Section 2.5.
- 2.4.13 Mortality rates of 1% to 100% are presented in Table 22 to Table 27, with the assessment mortality rate of 1% highlighted.

										Mortali	ty (%)									
	%	1	2	3	4	5	6	7	8	9	10	20	30	40	50	60	70	80	90	100
	10	0	0	1	1	1	1	1	2	2	2	4	6	8	10	11	13	15	17	19
	20	0	1	1	2	2	2	3	3	3	4	8	11	15	19	23	27	31	34	38
	30	1	1	2	2	3	3	4	5	5	6	11	17	23	29	34	40	46	52	57
t (%)	40	1	2	2	3	4	5	5	6	7	8	15	23	31	38	46	53	61	69	76
men	50	1	2	3	4	5	6	7	8	9	10	19	29	38	48	57	67	76	86	96
lacel	60	1	2	3	5	6	7	8	9	10	11	23	34	46	57	69	80	92	103	115
Disp	70	1	3	4	5	7	8	9	11	12	13	27	40	53	67	80	94	107	120	134
	80	2	3	5	6	8	9	11	12	14	15	31	46	61	76	92	107	122	138	153
	90	2	3	5	7	9	10	12	14	15	17	34	52	69	86	103	120	138	155	172
	100	2	4	6	8	10	11	13	15	17	19	38	57	76	96	115	134	153	172	191

Table 22 Estimated number of kittiwakes predicted to be at risk of mortality following displacement from the array area in the migration-free breeding season (May to July)

Table 23 Estimated number of kittiwakes predicted to be at risk of mortality following displacement from the array area plus 2 buffer in the migration-free breeding season (May to July)

										Mortali	ty (%)									
	%	1	2	3	4	5	6	7	8	9	10	20	30	40	50	60	70	80	90	100
	10	1	1	2	2	3	4	4	5	6	6	12	19	25	31	37	44	50	56	62
	20	1	2	4	5	6	7	9	10	11	12	25	37	50	62	75	87	100	112	124
	30	2	4	6	7	9	11	13	15	17	19	37	56	75	93	112	131	149	168	187
t (%)	40	2	5	7	10	12	15	17	20	22	25	50	75	100	124	149	174	199	224	249
men	50	3	6	9	12	16	19	22	25	28	31	62	93	124	156	187	218	249	280	311
lacel	60	4	7	11	15	19	22	26	30	34	37	75	112	149	187	224	261	299	336	373
Disp	70	4	9	13	17	22	26	30	35	39	44	87	131	174	218	261	305	348	392	435
	80	5	10	15	20	25	30	35	40	45	50	100	149	199	249	299	348	398	448	498
	90	6	11	17	22	28	34	39	45	50	56	112	168	224	280	336	392	448	504	560
	100	6	12	19	25	31	37	44	50	56	62	124	187	249	311	373	435	498	560	622

										Mortali	ity (%)									
	%	1	2	3	4	5	6	7	8	9	10	20	30	40	50	60	70	80	90	100
	10	0	1	1	1	1	2	2	2	2	3	5	8	11	13	16	19	21	24	27
	20	1	1	2	2	3	3	4	4	5	5	11	16	21	27	32	38	43	48	54
	30	1	2	2	3	4	5	6	6	7	8	16	24	32	40	48	56	64	72	80
t (%)	40	1	2	3	4	5	6	8	9	10	11	21	32	43	54	64	75	86	96	107
men.	50	1	3	4	5	7	8	9	11	12	13	27	40	54	67	80	94	107	121	134
lace	60	2	3	5	6	8	10	11	13	14	16	32	48	64	80	96	113	129	145	161
Disp	70	2	4	6	8	9	11	13	15	17	19	38	56	75	94	113	131	150	169	188
	80	2	4	6	9	11	13	15	17	19	21	43	64	86	107	129	150	172	193	214
	90	2	5	7	10	12	14	17	19	22	24	48	72	96	121	145	169	193	217	241
	100	3	5	8	11	13	16	19	21	24	27	54	80	107	134	161	188	214	241	268

Table 24 Estimated number of kittiwakes predicted to be at risk of mortality following displacement from the array area in the autumn migration period of the non-breeding season (August to December)

Table 25 Estimated number of kittiwakes predicted to be at risk of mortality following displacement from the array area plus 2 buffer in the autumn migration period of the non-breeding season (August to December)

										Mortali	ty (%)									
	%	1	2	3	4	5	6	7	8	9	10	20	30	40	50	60	70	80	90	100
	10	1	1	2	3	4	4	5	6	7	7	15	22	30	37	45	52	60	67	75
	20	1	3	4	6	7	9	10	12	13	15	30	45	60	75	90	105	120	135	150
	30	2	4	7	9	11	13	16	18	20	22	45	67	90	112	135	157	180	202	225
t (%)	40	3	6	9	12	15	18	21	24	27	30	60	90	120	150	180	210	240	270	300
nen.	50	4	7	11	15	19	22	26	30	34	37	75	112	150	187	225	262	300	337	375
lacel	60	4	9	13	18	22	27	31	36	40	45	90	135	180	225	270	315	360	404	449
Disp	70	5	10	16	21	26	31	37	42	47	52	105	157	210	262	315	367	419	472	524
	80	6	12	18	24	30	36	42	48	54	60	120	180	240	300	360	419	479	539	599
	90	7	13	20	27	34	40	47	54	61	67	135	202	270	337	404	472	539	607	674
	100	7	15	22	30	37	45	52	60	67	75	150	225	300	375	449	524	599	674	749

										Mortali	ty (%)									
	%	1	2	3	4	5	6	7	8	9	10	20	30	40	50	60	70	80	90	100
	10	0	1	1	1	2	2	2	3	3	3	6	9	13	16	19	22	25	28	31
	20	1	1	2	3	3	4	4	5	6	6	13	19	25	31	38	44	50	57	63
	30	1	2	3	4	5	6	7	8	8	9	19	28	38	47	57	66	75	85	94
t (%)	40	1	3	4	5	6	8	9	10	11	13	25	38	50	63	75	88	100	113	126
men [.]	50	2	3	5	6	8	9	11	13	14	16	31	47	63	79	94	110	126	141	157
lace	60	2	4	6	8	9	11	13	15	17	19	38	57	75	94	113	132	151	170	188
Disp	70	2	4	7	9	11	13	15	18	20	22	44	66	88	110	132	154	176	198	220
	80	3	5	8	10	13	15	18	20	23	25	50	75	100	126	151	176	201	226	251
	90	3	6	8	11	14	17	20	23	25	28	57	85	113	141	170	198	226	254	283
	100	3	6	9	13	16	19	22	25	28	31	63	94	126	157	188	220	251	283	314

Table 26 Estimated number of kittiwakes predicted to be at risk of mortality following displacement from the array area in the spring migration period of the non-breeding season (January to April)

Table 27 Estimated number of kittiwakes predicted to be at risk of mortality following displacement from the array area plus 2 buffer in the spring migration period of the non-breeding season (January to April)

										Mortali	ty (%)									
	%	1	2	3	4	5	6	7	8	9	10	20	30	40	50	60	70	80	90	100
	10	1	2	3	3	4	5	6	7	8	9	17	26	34	43	51	60	68	77	85
	20	2	3	5	7	9	10	12	14	15	17	34	51	68	85	102	119	136	153	170
	30	3	5	8	10	13	15	18	20	23	26	51	77	102	128	153	179	204	230	255
t (%)	40	3	7	10	14	17	20	24	27	31	34	68	102	136	170	204	238	272	306	340
nen.	50	4	9	13	17	21	26	30	34	38	43	85	128	170	213	255	298	340	383	425
lacel	60	5	10	15	20	26	31	36	41	46	51	102	153	204	255	306	357	408	459	510
Disp	70	6	12	18	24	30	36	42	48	54	60	119	179	238	298	357	417	476	536	595
	80	7	14	20	27	34	41	48	54	61	68	136	204	272	340	408	476	544	612	680
	90	8	15	23	31	38	46	54	61	69	77	153	230	306	383	459	536	612	689	765
	100	9	17	26	34	43	51	60	68	77	85	170	255	340	425	510	595	680	765	850

2.5 Guillemot

- 2.5.1 There were sufficient sightings of guillemots on the water to run a Distance analysis on both the 2016-2017 and 2019-2021 datasets, therefore the guillemot displacement assessment is based on the Distance analysis of the 2016-2017 and 2019-2021 data for birds on the water and flying birds. A more detailed breakdown of monthly numbers of birds on the water and in flight is presented in the Offshore and Intertidal Ornithology Technical Baseline. The breeding season for guillemot has been defined as March to July (Furness, 2015). Furness (2015) considered that outside the breeding season there was one BDMPS period for guillemot; the non-breeding season (August to February).
- 2.5.2 Monthly peak estimated numbers of guillemots in the array area and the array area plus 2 km buffer between January and December are presented in Table 28.

	J	F	Μ	Α	Μ	J	J	Α	S	0	Ν	D
Array a	area onl	у										
Lower	319	142	758	5,556	1,768	986	972	614	591	243	342	378
Mean	504	207	1,384	9,208	3,002	1,453	1,603	1,004	943	421	654	654
Upper	797	303	2,578	15,340	5,246	2,173	2,755	1,684	1,520	740	1,253	1,136
Array a	area and	d 2 km	n Buffer									
Lower	556	243	1,272	9,655	2,994	1,655	1,632	1,033	984	409	574	617
Mean	946	361	2,358	16,055	5,081	2,444	2,675	1,690	1,566	702	1,095	1,070
Upper	1,549	531	4,423	26,692	8,857	3,662	4,596	2,832	2,525	1,231	2,097	1,866

Table 28 Estimated monthly numbers of guillemots in the array area only, and in the array area plus 2 km buffer area, based on data from 2016-2017 and 2019-2021 surveys

- 2.5.3 In addition, there were sightings of guillemots/razorbills on baseline surveys that could not be determined to species. Estimated numbers of unidentified guillemots/razorbills were derived from baseline survey data by applying Distance sampling techniques to the 2019-2021 dataset only for birds on the water, as there were insufficient sightings on the water in the 2016-2017 dataset to run a Distance analysis. Both datasets were used for birds in flight. Furthers details are presented in the Offshore and Intertidal Ornithology Technical Baseline.
- 2.5.4 For the displacement assessment, the ratios of identified guillemots and razorbills were calculated for each month, based on the mean estimate of each species for each month (Table 29).
- 2.5.5 These ratios were applied to the monthly estimated totals of unidentified guillemots/razorbills (see Offshore and Intertidal Ornithology Technical Baseline), to provide an additional estimate of guillemots from these unidentified birds in the array area. These additional guillemots were then added to the mean monthly estimates of guillemots (Table 30).

Table 29 Ratio of the total number of identified guillemots and razorbills by month in the array area and 4 km buffer from the 2016-2017 and 2019-2021 surveys

Month	Guillemot	Razorbill	Total	Ratio GU/RA
Jan	2,405	230	2,635	0.91/0.09
Feb	989	126	1,115	0.89/0.11
Mar	6,602	1,289	7,891	0.84/0.16
Apr	43,913	583	44,496	0.99/0.01
May	14,318	936	15,254	0.94/0.06
Jun	6,931	587	7,518	0.92/0.08
Jul	7,643	2,346	9,989	0.77/0.23
Aug	4790	1,972	6,762	0.71/0.29
Sep	4,496	5,784	10,280	0.44/0.56
Oct	2,009	275	2,284	0.88/0.12
Nov	3,117	781	3,898	0.80/0.20
Dec	3,119	620	3,739	0.83/0.17

Table 30 Estimated numbers of additional guillemots by month in the array area based on 2016-2017 and 2019-2021 surveys

Month	Unidentified GU/RA	Ratio GU/RA	Additional guillemots	Mean estimated guillemots	Revised monthly mean
Jan	3	0.91/0.09	3	504	507
Feb	0	0.89/0.11	0	207	207
Mar	30	0.84/0.16	25	1,384	1,409
Apr	961	0.99/0.01	951	9,208	10,159
May	427	0.94/0.06	401	3,002	3,403
Jun	19	0.92/0.08	17	1,453	1,470
Jul	388	0.77/0.23	299	1,603	1,902
Aug	196	0.71/0.29	139	1,004	1,143
Sep	19	0.44/0.56	8	943	951
Oct	1	0.88/0.12	1	421	422
Nov	1	0.80/0.20	1	654	655
Dec	10	0.83/0.17	8	654	662

2.5.6 This process was repeated for additional guillemots in the array area and 2km buffer (Table 31).

Table 31 Estimated numbers of additional guillemots by month in the array area and 2 km buffer based on 2016-2017 and 2019-2021 surveys

Month	Unidentified GU/RA	Ratio GU/RA	Additional guillemots	Mean estimated guillemots	Revised monthly mean
Jan	43	0.91/0.09	39	946	985
Feb	0	0.89/0.11	0	361	361
Mar	80	0.84/0.16	67	2,358	2,425
Apr	2,659	0.99/0.01	2,632	16,055	18,687
May	1,146	0.94/0.06	1,077	5,081	6,158
Jun	36	0.92/0.08	33	2,444	2,477
Jul	1,041	0.77/0.23	802	2,675	3,477
Aug	526	0.71/0.29	373	1,690	2,063
Sep	51	0.44/0.56	22	1,566	1,588
Oct	2	0.88/0.12	2	702	704
Nov	2	0.80/0.20	2	1,095	1,097
Dec	39	0.83/0.17	32	1,070	1,102

- 2.5.7 In the breeding season (March to July), the peak mean estimated number of guillemots in the array area was 10,159 birds in April (Table 30), while the peak mean estimated number of guillemots in the array area plus 2 km buffer was 18,687 birds in April (Table 31).
- 2.5.8 In the non-breeding season (August to February), mean estimated numbers of guillemots were lower, with a peak mean estimated number of 1,143 birds in the array area in August (Table 30). In the array area and 2 km buffer, the peak mean estimated number of guillemots in the non-breeding season was 2,063 birds in August (Table 31).
- 2.5.9 These revised peak estimated means were taken as the maximum number of guillemots in the array area and in the array area and 2 km buffer for the breeding and non-breeding seasons and were used in the displacement matrices produced for this assessment (Table 32 to Table 35).
- 2.5.10 A review of studies on auk displacement in response to the presence of wind turbines by Dierschke *et al.*, (2016) examined results from 13 OWF sites in Europe that compared changes in seabird abundance between baseline and post-construction scenarios. The review concluded that the mean outcome across all 13 OWFs for auks was 'weak displacement' but this was highly variable.
- 2.5.11 The strongest displacement effects were reported for Thorntonbank and Bligh Bank OWFs in Belgian waters, with reductions in density of 68% and 75% for guillemot respectively at these two OWFs. Reported razorbill displacement at these two OWFs was slightly lower, with reductions in density of 55% and 67% respectively (Dierschke *et al.*, 2016).

- 2.5.12 A more recent review considered that the displacement effects reported by Dierschke *et al.*, (2016) may be over-estimates. The review considered all OWF post-construction monitoring studies undertaken to date within the North Sea and UK Western Waters and found that results of the post-construction studies varied considerably across the different sites, with one OWF showing positive displacement effects (attraction), eight OWFs with no significant effects or weak displacement effects, three with inferred displacement effects (but not statistically tested) and eight with negative displacement effects (APEM, 2022).
- 2.5.13 After examining the analysis methods used in these different studies, the APEM (2022) review suggested that not all estimated displacement effects were equally robust, as there were many sites where high displacement rates were predicted that had low or very low auk abundance. The review suggested that for sites with high numbers of zero counts, prediction of likely displacement rates is highly problematic, given the natural spatial and temporal variation in auk abundance and distribution. The review concluded that at such sites, the reported displacement effects are most likely unreliable. One example of this is from the Prinses Amalia and Egmond aan Zee OWFs off the coast of the Netherlands, where significant displacement effects were previously reported. Independent re-analysis of the postconstruction data using the statistical package R-INLA did not detect a statistically significant effect (Zuur, 2018). The same study also concluded that previously reported displacement effects at Alpha Ventus, Blighbank, Thorntonbank and Horns Rev OWFs, may also be misleading since there were high numbers of zero observations of guillemots in their datasets which is a major challenge for statistical analysis, requiring advanced statistical methods (Zuur, 2018). These studies make up the majority of reported auk displacement rates of up to 75%. The APEM (2022) review recommended that results from these studies should be regarded with caution and not presented as strong evidence in support of high displacement effects, following the work undertaken by Zuur (2018).
- 2.5.14 The APEM (2022) review concluded that OWF sites with moderate to high auk abundances (e.g. densities of ≥5/km²), tend to have reported displacement effects that are non-significant or weak. This is based on analysis of post-construction data from UK OWF projects such as Beatrice, Robin Rigg, Westermost Rough, North Hoyle, Lincs and Thanet.
- 2.5.15 The Year 1 post-construction study report for Beatrice OWF reported that both guillemots and razorbills were more abundant within the wind farm on post-construction surveys than on pre-construction surveys. Results showed that there was a significant increase in the overall guillemot and razorbill abundance post-construction but found that the spatial component of this relationship was not significant. No parts of the study area were found to have significant reductions, but the southern half of the study area had significant increases. Overall, the report concluded that for both guillemot and razorbill, the displacement rates of 30-70% currently used in wind farm assessments are considerably over-estimated, at least in the breeding season for similar wind farms (BOWL, 2021). Results from Year 2 post-construction analyses corroborate the findings of Year 1 (MacArthur Green, 2023). A further analysis of post-construction data at Beatrice Offshore Wind Farm in the Moray Firth concluded that there were no displacement effects for guillemot or razorbill, with no significant differences observed between mean density and expected density of birds (Trinder *et al.*, 2024).

- 2.5.16 The APEM (2022) review concluded that a precautionary approach would be to use a displacement rate of up to 50% for guillemots and razorbills.
- 2.5.17 Studies investigating potential guillemot and razorbill mortality as a result of displacement from offshore wind turbines are extremely limited. Empirical evidence is anecdotal with implied low additional mortality rates for guillemots breeding on Helgoland in the German North Sea, close to where OWFs have been operating since 2014 (Peschko *et al.*, 2020). Displacement rates for guillemots were predicted to be 44% in the breeding season and 63% in the non-breeding season (Peschko *et al.*, 2020). Colony counts since 2014 provide supporting evidence that rates of mortality higher than 1% are not apparent, as the number of breeding guillemots remained largely stable between 2000–2018 (Dierschke *et al.*, 2011; Dierschke *et al.*, 2018).
- 2.5.18 A review undertaken by Norfolk Vanguard (MacArthur Green 2019) included an investigation on the likely consequences of displacement at the population level. This review concluded that displacement of guillemots and razorbills by OWFs is likely to be incomplete, may reduce with habituation, and that in the long term there may be increased food availability to guillemots and razorbills through providing enhanced habitat for fish populations around OWFs. These factors, together with the very low level of natural mortality of adult guillemots and razorbills (approximately 6% and 10% per annum respectively; Horswill and Robinson, 2015), suggest that impacts of displacement from OWFs are unlikely to represent levels of mortality anywhere close to the 6% or 10% total annual mortality that occurs due to the combination of many natural factors plus existing human activities (MacArthur Green 2019).
- 2.5.19 Based on the above, it is considered that a displacement rate of 50% and a mortality rate of 1% for the breeding and non-breeding seasons is suitably precautionary for an assessment of displacement effects from Dublin Array on guillemots and razorbills. However, based on guidance from NatureScot (2023), the assessment also includes a displacement rate of 60% and mortality rates of 3% and 5% for the breeding season, and 1% and 3% for the non-breeding season. These rates are also in line with those values discussed and agreed between the east coast Phase 1 developers, and circulated to NPWS in December 2022 (GoBe, 2022)
- 2.5.20 For the purposes of this assessment, a displacement rate range of 50-60%% is highlighted in each matrix. The same scenarios have also been applied for the array area plus 2 km buffer. Mortality rates of 1% to 100% are presented in Table 32 to Table 35, with the assessment mortality rate of 1%, 3% and 5% highlighted, depending on season.

										Mortali	ty (%)									
	%	1	2	3	4	5	6	7	8	9	10	20	30	40	50	60	70	80	90	100
	10	10	20	30	41	51	61	71	81	91	102	203	305	406	508	610	711	813	914	1,016
	20	20	41	61	81	102	122	142	163	183	203	406	610	813	1,016	1,219	1,422	1,625	1,829	2,032
~	30	30	61	91	122	152	183	213	244	274	305	610	914	1,219	1,524	1,829	2,133	2,438	2,743	3,048
t (%	40	41	81	122	163	203	244	284	325	366	406	813	1,219	1,625	2,032	2,438	2,845	3,251	3,657	4,064
men	50	51	102	152	203	254	305	356	406	457	508	1,016	1,524	2,032	2,540	3,048	3,556	4,064	4,572	5,080
lace	60	61	122	183	244	305	366	427	488	549	610	1,219	1,829	2,438	3,048	3,657	4,267	4,876	5,486	6,095
Disp	70	71	142	213	284	356	427	498	569	640	711	1,422	2,133	2,845	3,556	4,267	4,978	5,689	6,400	7,111
	80	81	163	244	325	406	488	569	650	731	813	1,625	2,438	3,251	4,064	4,876	5,689	6,502	7,314	8,127
	90	91	183	274	366	457	549	640	731	823	914	1,829	2,743	3,657	4,572	5,486	6,400	7,314	8,229	9,143
	100	102	203	305	406	508	610	711	813	914	1,016	2,032	3,048	4,064	5,080	6,095	7,111	8,127	9,143	10,159

Table 32 Estimated number of guillemots predicted to be at risk of mortality following displacement from the array area in the breeding season (March to July)

Table 33 Estimated number of guillemots predicted to be at risk of mortality following displacement from the array area plus 2 buffer in the breeding season (March to July)

										Mortali	ity (%)									
	%	1	2	3	4	5	6	7	8	9	10	20	30	40	50	60	70	80	90	100
	10	19	37	56	75	93	112	131	149	168	187	374	561	747	934	1,121	1,308	1,495	1,682	1,869
	20	37	75	112	149	187	224	262	299	336	374	747	1,121	1,495	1,869	2,242	2,616	2,990	3,364	3,737
	30	56	112	168	224	280	336	392	448	505	561	1,121	1,682	2,242	2,803	3,364	3,924	4,485	5,045	5,606
t (%	40	75	149	224	299	374	448	523	598	673	747	1,495	2,242	2,990	3,737	4,485	5,232	5,980	6,727	7,475
men	50	93	187	280	374	467	561	654	747	841	934	1,869	2,803	3,737	4,672	5,606	6,540	7,475	8,409	9,344
lace	60	112	224	336	448	561	673	785	897	1,009	1,121	2,242	3,364	4,485	5,606	6,727	7,849	8,970	10,091	11,212
Jisp	70	131	262	392	523	654	785	916	1,046	1,177	1,308	2,616	3,924	5,232	6,540	7,849	9,157	10,465	11,773	13,081
	80	149	299	448	598	747	897	1,046	1,196	1,345	1,495	2,990	4,485	5,980	7,475	8,970	10,465	11,960	13,455	14,950
	90	168	336	505	673	841	1,009	1,177	1,345	1,514	1,682	3,364	5,045	6,727	8,409	10,091	11,773	13,455	15,136	16,818
	100	187	374	561	747	934	1,121	1,308	1,495	1,682	1,869	3,737	5,606	7,475	9,344	11,212	13,081	14,950	16,818	18,687

										Mortali	ty (%)									
	%	1	2	3	4	5	6	7	8	9	10	20	30	40	50	60	70	80	90	100
	10	1	2	3	5	6	7	8	9	10	11	23	34	46	57	69	80	91	103	114
	20	2	5	7	9	11	14	16	18	21	23	46	69	91	114	137	160	183	206	229
	30	3	7	10	14	17	21	24	27	31	34	69	103	137	171	206	240	274	309	343
t (%	40	5	9	14	18	23	27	32	37	41	46	91	137	183	229	274	320	366	411	457
men	50	6	11	17	23	29	34	40	46	51	57	114	171	229	286	343	400	457	514	572
lace	60	7	14	21	27	34	41	48	55	62	69	137	206	274	343	411	480	549	617	686
Jisp	70	8	16	24	32	40	48	56	64	72	80	160	240	320	400	480	560	640	720	800
	80	9	18	27	37	46	55	64	73	82	91	183	274	366	457	549	640	732	823	914
	90	10	21	31	41	51	62	72	82	93	103	206	309	411	514	617	720	823	926	1,029
	100	11	23	34	46	57	69	80	91	103	114	229	343	457	572	686	800	914	1,029	1,143

Table 34 Estimated number of guillemots predicted to be at risk of mortality following displacement from the array area in the non-breeding season (August to February)

Table 35 Estimated number of guillemots predicted to be at risk of mortality following displacement from the array area plus 2 km buffer in the non-breeding season (August to February)

										Mortali	ty (%)									
	%	1	2	3	4	5	6	7	8	9	10	20	30	40	50	60	70	80	90	100
	10	2	4	6	8	10	12	14	17	19	21	41	62	83	103	124	144	165	186	206
	20	4	8	12	17	21	25	29	33	37	41	83	124	165	206	248	289	330	371	413
	30	6	12	19	25	31	37	43	50	56	62	124	186	248	309	371	433	495	557	619
t (%	40	8	17	25	33	41	50	58	66	74	83	165	248	330	413	495	578	660	743	825
men	50	10	21	31	41	52	62	72	83	93	103	206	309	413	516	619	722	825	928	1,032
lace	60	12	25	37	50	62	74	87	99	111	124	248	371	495	619	743	866	990	1,114	1,238
Disp	70	14	29	43	58	72	87	101	116	130	144	289	433	578	722	866	1,011	1,155	1,300	1,444
	80	17	33	50	66	83	99	116	132	149	165	330	495	660	825	990	1,155	1,320	1,485	1,650
	90	19	37	56	74	93	111	130	149	167	186	371	557	743	928	1,114	1,300	1,485	1,671	1,857
	100	21	41	62	83	103	124	144	165	186	206	413	619	825	1,032	1,238	1,444	1,650	1,857	2,063

2.6 Razorbill

- 2.6.1 There were sufficient sightings of razorbills on the water to run a Distance analysis on both the 2016-2017 and 2019-2021 datasets, therefore the razorbill displacement assessment is based on the Distance analysis of the 2016-2017 and 2019-2021 data for birds on the water and flying birds. A more detailed breakdown of monthly numbers of birds on the water and in flight is presented in the Offshore and Intertidal Ornithology Technical Baseline. The breeding season for razorbill has been defined as April to July (Furness, 2015). Furness (2015) considered that outside the breeding season there were three BDMPS periods for razorbill; autumn migration (August to October), winter (November to December) and spring migration (January to March).
- 2.6.2 Monthly peak estimated numbers of razorbills in the array area and the array area plus 2 km buffer between January and December are presented in Table 36.

	J	F	Μ	Α	М	J	J	Α	S	0	Ν	D
Array a	area onl	y										
Lower 20 5 128				67	104	70	222	245	808	25	90	63
Mean	48	26	270	122	196	123	492	413	1,213	58	164	130
Upper	107	123	573	222	371	211	1,075	702	1,864	125	304	266
Array a	area ano	d 2 km	n Buffer									
Lower	34	8	216	122	175	117	377	410	1,360	53	149	97
Mean	81	44	465	238	335	205	829	690	2,041	120	281	204
Upper	173	206	996	433	637	350	1,809	1,173	3,134	244	532	426

Table 36 Estimated monthly numbers of razorbills in the array area only, and in the array area plus 2 km buffer area, based on data from 2016-2017 and 2019-2021 surveys

- 2.6.3 In addition, there were sightings of guillemots/razorbills on baseline surveys that could not be determined to species. Estimated numbers of unidentified guillemots/razorbills were derived from baseline survey data by applying Distance sampling techniques to the 2019-2021 dataset only for birds on the water, as there were insufficient sightings on the water in the 2016-2017 dataset to run a Distance analysis. Both datasets were used for birds in flight. Furthers details are presented in the Offshore and Intertidal Ornithology Technical Baseline.
- 2.6.4 For the displacement assessment, the ratios of identified guillemots and razorbills were calculated for each month, based on the mean estimate of each species for each month (Table 29).
- 2.6.5 These ratios were applied to the monthly estimated totals of unidentified guillemots/razorbills (see Offshore and Intertidal Ornithology Technical Baseline), to provide an additional estimate of razorbills from these unidentified birds in the array area (Table 37). These additional razorbills were then added to the mean monthly estimates of razorbills (from Table 36).

Table 37 Estimated numbers of additional razorbills by month in the array area based on 2016-2017 and 2019-2021 surveys

Month	Unidentified GU/RA	Ratio GU/RA	Additional razorbills	Mean estimated razorbills	Revised monthly mean
Jan	3	0.91/0.09	0	48	48
Feb	0	0.89/0.11	0	26	26
Mar	30	0.84/0.16	5	270	275
Apr	961	0.99/0.01	10	122	132
May	427	0.94/0.06	26	196	222
Jun	19	0.92/0.08	2	123	125
Jul	388	0.77/0.23	89	492	581
Aug	196	0.71/0.29	57	413	470
Sep	19	0.44/0.56	11	1,213	1,224
Oct	1	0.88/0.12	0	58	58
Nov	1	0.80/0.20	0	164	164
Dec	10	0.83/0.17	2	130	132

2.6.6 This process was repeated for additional razorbills in the array area and 2km buffer (Table 38).

Table 38 Estimated numbers of additional razorbills by month in the array area and 2 km buffer based on 2016-2017 and 2019-2021 surveys

Month	Unidentified GU/RA	Ratio GU/RA	Additional razorbills	Mean estimated razorbills	Revised monthly mean
Jan	43	0.91/0.09	4	81	85
Feb	0	0.89/0.11	0	44	44
Mar	80	0.84/0.16	13	465	478
Apr	2,659	0.99/0.01	27	238	265
May	1,146	0.94/0.06	69	335	404
Jun	36	0.92/0.08	3	205	208
Jul	1,041	0.77/0.23	239	829	1,068
Aug	526	0.71/0.29	153	690	843
Sep	51	0.44/0.56	29	2,041	2,070
Oct	2	0.88/0.12	0	120	120
Nov	2	0.80/0.20	0	281	281
Dec	39	0.83/0.17	7	204	211

- 2.6.7 In the breeding season (April to July), the peak mean estimated number of razorbills in the array area was 581 birds in July (Table 37), while the peak mean estimated number of razorbills in the array area plus 2 km buffer was 1,068 birds in July (Table 38).
- 2.6.8 In the autumn migration period of the non-breeding season (August to October), mean estimated numbers of razorbills were higher, with a peak mean estimated number of 1,224 birds in the array area in September (Table 37). In the array area and 2 km buffer, the peak mean estimated number of razorbills in the autumn migration period was 2,070 birds in September (Table 38).
- 2.6.9 In the winter period of the non-breeding season (November to December), mean estimated numbers of razorbills were lowest, with a peak mean estimated number of 164 birds in the array area in November (Table 37). In the array area and 2 km buffer, the peak mean estimated number of razorbills in the winter period was 281 birds in November (Table 38).
- 2.6.10 In the spring migration period of the non-breeding season (January to March), mean estimated numbers of razorbills were slightly higher, with a peak mean estimated number of 275 birds in the array area in March (Table 37). In the array area and 2 km buffer, the peak mean estimated number of razorbills in the spring migration period was 478 birds in March (Table 38).
- 2.6.11 These peak estimated means were taken as the maximum number of razorbills in the array area and in the array area and 2 km buffer for the breeding season, the autumn migration period, the winter period and the spring migration period of the non-breeding seasons, and were used in the Displacement matrices produced for this assessment (Table 39 to Table 46).
- 2.6.12 For the purposes of this assessment, displacement rates of 50% and 60% are highlighted in each matrix. The same scenarios have also been applied for the array area plus 2 km buffer. Mortality rates of 1% to 100% are presented in Table 39 to Table 46, with mortality rates of 1%, 3% and 5% highlighted. An explanation of why these rates have been applied is presented above in the guillemot text.

										Mortali	ty (%)									
	%	1	2	3	4	5	6	7	8	9	10	20	30	40	50	60	70	80	90	100
	10	1	1	2	2	3	3	4	5	5	6	12	17	23	29	35	41	46	52	58
	20	1	2	3	5	6	7	8	9	10	12	23	35	46	58	70	81	93	105	116
~	30	2	3	5	7	9	10	12	14	16	17	35	52	70	87	105	122	139	157	174
t (%	40	2	5	7	9	12	14	16	19	21	23	46	70	93	116	139	163	186	209	232
men	50	3	6	9	12	15	17	20	23	26	29	58	87	116	145	174	203	232	261	291
lace	60	3	7	10	14	17	21	24	28	31	35	70	105	139	174	209	244	279	314	349
Jisp	70	4	8	12	16	20	24	28	33	37	41	81	122	163	203	244	285	325	366	407
	80	5	9	14	19	23	28	33	37	42	46	93	139	186	232	279	325	372	418	465
	90	5	10	16	21	26	31	37	42	47	52	105	157	209	261	314	366	418	471	523
	100	6	12	17	23	29	35	41	46	52	58	116	174	232	291	349	407	465	523	581

Table 39 Estimated number of razorbills predicted to be at risk of mortality following displacement from the array area in the breeding season (April to July)

Table 40 Estimated number of razorbills predicted to be at risk of mortality following displacement from the array area plus 2 buffer in the breeding season (April to July)

										Mortali	ty (%)									
	%	1	2	3	4	5	6	7	8	9	10	20	30	40	50	60	70	80	90	100
	10	1	2	3	4	5	6	7	9	10	11	21	32	43	53	64	75	85	96	107
	20	2	4	6	9	11	13	15	17	19	21	43	64	85	107	128	150	171	192	214
	30	3	6	10	13	16	19	22	26	29	32	64	96	128	160	192	224	256	288	320
t (%	40	4	9	13	17	21	26	30	34	38	43	85	128	171	214	256	299	342	384	427
men	50	5	11	16	21	27	32	37	43	48	53	107	160	214	267	320	374	427	481	534
lace	60	6	13	19	26	32	38	45	51	58	64	128	192	256	320	384	449	513	577	641
Jisp	70	7	15	22	30	37	45	52	60	67	75	150	224	299	374	449	523	598	673	748
	80	9	17	26	34	43	51	60	68	77	85	171	256	342	427	513	598	684	769	854
	90	10	19	29	38	48	58	67	77	87	96	192	288	384	481	577	673	769	865	961
	100	11	21	32	43	53	64	75	85	96	107	214	320	427	534	641	748	854	961	1,068

										Mortali	ty (%)									
	%	1	2	3	4	5	6	7	8	9	10	20	30	40	50	60	70	80	90	100
	10	1	2	4	5	6	7	9	10	11	12	24	37	49	61	73	86	98	110	122
	20	2	5	7	10	12	15	17	20	22	24	49	73	98	122	147	171	196	220	245
	30	4	7	11	15	18	22	26	29	33	37	73	110	147	184	220	257	294	330	367
t (%	40	5	10	15	20	24	29	34	39	44	49	98	147	196	245	294	343	392	441	490
men	50	6	12	18	24	31	37	43	49	55	61	122	184	245	306	367	428	490	551	612
acei	60	7	15	22	29	37	44	51	59	66	73	147	220	294	367	441	514	588	661	734
Jisp	70	9	17	26	34	43	51	60	69	77	86	171	257	343	428	514	600	685	771	857
	80	10	20	29	39	49	59	69	78	88	98	196	294	392	490	588	685	783	881	979
	90	11	22	33	44	55	66	77	88	99	110	220	330	441	551	661	771	881	991	1,102
	100	12	24	37	49	61	73	86	98	110	122	245	367	490	612	734	857	979	1,102	1,224

Table 41 Estimated number of razorbills predicted to be at risk of mortality following displacement from the array area in the autumn migration period of the non-breeding season (August to October)

Table 42 Estimated number of razorbills predicted to be at risk of mortality following displacement from the array area plus 2 km buffer in the autumn migration period of the non-breeding season (August to October)

										Mortali	ty (%)									
	%	1	2	3	4	5	6	7	8	9	10	20	30	40	50	60	70	80	90	100
	10	2	4	6	8	10	12	14	17	19	21	41	62	83	104	124	145	166	186	207
	20	4	8	12	17	21	25	29	33	37	41	83	124	166	207	248	290	331	373	414
	30	6	12	19	25	31	37	43	50	56	62	124	186	248	311	373	435	497	559	621
t (%	40	8	17	25	33	41	50	58	66	75	83	166	248	331	414	497	580	662	745	828
men	50	10	21	31	41	52	62	72	83	93	104	207	311	414	518	621	725	828	932	1,035
lace	60	12	25	37	50	62	75	87	99	112	124	248	373	497	621	745	869	994	1,118	1,242
Disp	70	14	29	43	58	72	87	101	116	130	145	290	435	580	725	869	1,014	1,159	1,304	1,449
	80	17	33	50	66	83	99	116	132	149	166	331	497	662	828	994	1,159	1,325	1,490	1,656
	90	19	37	56	75	93	112	130	149	168	186	373	559	745	932	1,118	1,304	1,490	1,677	1,863
	100	21	41	62	83	104	124	145	166	186	207	414	621	828	1,035	1,242	1,449	1,656	1,863	2,070

										Mortali	ty (%)									
	%	1	2	3	4	5	6	7	8	9	10	20	30	40	50	60	70	80	90	100
	10	0	0	0	1	1	1	1	1	1	2	3	5	7	8	10	11	13	15	16
	20	0	1	1	1	2	2	2	3	3	3	7	10	13	16	20	23	26	30	33
	30	0	1	1	2	2	3	3	4	4	5	10	15	20	25	30	34	39	44	49
t (%	40	1	1	2	3	3	4	5	5	6	7	13	20	26	33	39	46	52	59	66
men	50	1	2	2	3	4	5	6	7	7	8	16	25	33	41	49	57	66	74	82
lacemen	60	1	2	3	4	5	6	7	8	9	10	20	30	39	49	59	69	79	89	98
Jisp	70	1	2	3	5	6	7	8	9	10	11	23	34	46	57	69	80	92	103	115
	80	1	3	4	5	7	8	9	10	12	13	26	39	52	66	79	92	105	118	131
	90	1	3	4	6	7	9	10	12	13	15	30	44	59	74	89	103	118	133	148
	100	2	3	5	7	8	10	11	13	15	16	33	49	66	82	98	115	131	148	164

Table 43 Estimated number of razorbills predicted to be at risk of mortality following displacement from the array area in the winter period of the non-breeding season (November to December)

Table 44 Estimated number of razorbills predicted to be at risk of mortality following displacement from the array area plus 2 km buffer in the winter period of the non-breeding season (November to December)

										Mortali	ty (%)									
	%	1	2	3	4	5	6	7	8	9	10	20	30	40	50	60	70	80	90	100
	10	0	1	1	1	1	2	2	2	3	3	6	8	11	14	17	20	22	25	28
	20	1	1	2	2	3	3	4	4	5	6	11	17	22	28	34	39	45	51	56
~	30	1	2	3	3	4	5	6	7	8	8	17	25	34	42	51	59	67	76	84
t (%	40	1	2	3	4	6	7	8	9	10	11	22	34	45	56	67	79	90	101	112
men	50	1	3	4	6	7	8	10	11	13	14	28	42	56	70	84	98	112	126	141
lace	60	2	3	5	7	8	10	12	13	15	17	34	51	67	84	101	118	135	152	169
Disp	70	2	4	6	8	10	12	14	16	18	20	39	59	79	98	118	138	157	177	197
_	80	2	4	7	9	11	13	16	18	20	22	45	67	90	112	135	157	180	202	225
	90	3	5	8	10	13	15	18	20	23	25	51	76	101	126	152	177	202	228	253
	100	3	6	8	11	14	17	20	22	25	28	56	84	112	141	169	197	225	253	281

										Mortali	ty (%)									
	%	1	2	3	4	5	6	7	8	9	10	20	30	40	50	60	70	80	90	100
	10	0	1	1	1	1	2	2	2	2	3	6	8	11	14	17	19	22	25	28
	20	1	1	2	2	3	3	4	4	5	6	11	17	22	28	33	39	44	50	55
	30	1	2	2	3	4	5	6	7	7	8	17	25	33	41	50	58	66	74	83
t (%	40	1	2	3	4	6	7	8	9	10	11	22	33	44	55	66	77	88	99	110
men	50	1	3	4	6	7	8	10	11	12	14	28	41	55	69	83	96	110	124	138
lace	60	2	3	5	7	8	10	12	13	15	17	33	50	66	83	99	116	132	149	165
Jisp	70	2	4	6	8	10	12	13	15	17	19	39	58	77	96	116	135	154	173	193
	80	2	4	7	9	11	13	15	18	20	22	44	66	88	110	132	154	176	198	220
	90	2	5	7	10	12	15	17	20	22	25	50	74	99	124	149	173	198	223	248
	100	3	6	8	11	14	17	19	22	25	28	55	83	110	138	165	193	220	248	275

Table 45 Estimated number of razorbills predicted to be at risk of mortality following displacement from the array area in the spring migration period of the non-breeding season (January to March)

Table 46 Estimated number of razorbills predicted to be at risk of mortality following displacement from the array area plus 2 km buffer in the spring migration period of the non-breeding season (January to March)

										Mortali	ty (%)									
	%	1	2	3	4	5	6	7	8	9	10	20	30	40	50	60	70	80	90	100
	10	0	1	1	2	2	3	3	4	4	5	10	14	19	24	29	33	38	43	48
	20	1	2	3	4	5	6	7	8	9	10	19	29	38	48	57	67	76	86	96
$\overline{}$	30	1	3	4	6	7	9	10	11	13	14	29	43	57	72	86	100	115	129	143
t (%	40	2	4	6	8	10	11	13	15	17	19	38	57	76	96	115	134	153	172	191
men	50	2	5	7	10	12	14	17	19	22	24	48	72	96	120	143	167	191	215	239
lace	60	3	6	9	11	14	17	20	23	26	29	57	86	115	143	172	201	229	258	287
Disp	70	3	7	10	13	17	20	23	27	30	33	67	100	134	167	201	234	268	301	335
	80	4	8	11	15	19	23	27	31	34	38	76	115	153	191	229	268	306	344	382
	90	4	9	13	17	22	26	30	34	39	43	86	129	172	215	258	301	344	387	430
	100	5	10	14	19	24	29	33	38	43	48	96	143	191	239	287	335	382	430	478

3 Cumulative Displacement Matrices

- 3.1.1 The following displacement matrices have been produced based on annual cumulative estimated numbers of displaced gannets, kittiwakes, guillemots and razorbills in the breeding and non-breeding seasons (Table 47 to Table 50). Shag has not been included as no other projects have predicted impacts on this species therefore the cumulative impact would be the same as project alone.
- 3.1.2 The Cumulative Effects Assessment (CEA) long list of projects, plans and activities with which Dublin Array's offshore infrastructure has the potential to interact with to produce a cumulative impact is presented within the Cumulative Effect Assessment Methodology chapter (Volume 2, Chapter 4, Annex A: Offshore Long-list). For the cumulative assessment, any projects beyond the Offshore Ornithology Regional Study Area (509.4 km) were not considered to have the potential to add any direct or indirect cumulative impact to offshore ornithology receptors in the breeding season. In the non-breeding season, all consented or submitted projects within the ICES Area Celtic Seas were considered in the CEA. Further details of projects screened in / out for the cumulative assessment are presented in Volume 3, Chapter 6: Offshore and Intertidal Ornithology.
- 3.1.3 The numbers of potential individuals vulnerable to displacement are derived from the project specific submitted applications. The annual abundances for each project are listed presented in Volume 3, Chapter 6: Offshore and Intertidal Ornithology.

Gannet

										Morta	lity (%)									
	%	1	2	3	4	5	6	7	8	9	10	20	30	40	50	60	70	80	90	100
	10	8	15	23	31	39	46	54	62	69	77	154	231	308	386	463	540	617	694	771
	20	15	31	46	62	77	93	108	123	139	154	308	463	617	771	925	1,079	1,234	1,388	1,542
	30	23	46	69	93	116	139	162	185	208	231	463	694	925	1,157	1,388	1,619	1,850	2,082	2,313
t (%	40	31	62	93	123	154	185	216	247	278	308	617	925	1,234	1,542	1,850	2,159	2,467	2,776	3,084
men	50	39	77	116	154	193	231	270	308	347	386	771	1,157	1,542	1,928	2,313	2,699	3,084	3,470	3,855
lace	60	46	93	139	185	231	278	324	370	416	463	925	1,388	1,850	2,313	2,776	3,238	3,701	4,163	4,626
Disp	70	54	108	162	216	270	324	378	432	486	540	1,079	1,619	2,159	2,699	3,238	3,778	4,318	4,857	5,397
	80	62	123	185	247	308	370	432	493	555	617	1,234	1,850	2,467	3,084	3,701	4,318	4,934	5,551	6,168
	90	69	139	208	278	347	416	486	555	625	694	1,388	2,082	2,776	3,470	4,163	4,857	5,551	6,245	6,939
	100	77	154	231	308	386	463	540	617	694	771	1,542	2,313	3,084	3,855	4,626	5,397	6,168	6,939	7,710

Table 47 Estimated annual cumulative numbers of gannets predicted to be at risk of mortality following displacement from Tier 1, 2 and 3 projects & 2 km buffer

Kittiwake

Table 48 Estimated annual cumulative numbers of kittiwakes predicted to be at risk of mortality following displacement from Tier 1, 2 and 3 projects & 2 km buffer

										Mortal	ity (%)									
	%	1	2	3	4	5	6	7	8	9	10	20	30	40	50	60	70	80	90	100
	10	32	64	95	127	159	191	222	254	286	318	635	953	1,270	1,588	1,905	2,223	2,541	2,858	3,176
	20	64	127	191	254	318	381	445	508	572	635	1,270	1,905	2,541	3,176	3,811	4,446	5,081	5,716	6,351
~	30	95	191	286	381	476	572	667	762	857	953	1,905	2,858	3,811	4,764	5,716	6,669	7,622	8,574	9,527
it (%	40	127	254	381	508	635	762	889	1,016	1,143	1,270	2,541	3,811	5,081	6,351	7,622	8,892	10,162	11,433	12,703
men	50	159	318	476	635	794	953	1,111	1,270	1,429	1,588	3,176	4,764	6,351	7,939	9,527	11,115	12,703	14,291	15,879
lace	60	191	381	572	762	953	1,143	1,334	1,524	1,715	1,905	3,811	5,716	7,622	9,527	11,433	13,338	15,243	17,149	19,054
Disp	70	222	445	667	889	1,111	1,334	1,556	1,778	2,001	2,223	4,446	6,669	8,892	11,115	13,338	15,561	17,784	20,007	22,230
	80	254	508	762	1,016	1,270	1,524	1,778	2,032	2,287	2,541	5,081	7,622	10,162	12,703	15,243	17,784	20,324	22,865	25,406
	90	286	572	857	1,143	1,429	1,715	2,001	2,287	2,572	2,858	5,716	8,574	11,433	14,291	17,149	20,007	22,865	25,723	28,581
	100	318	635	953	1,270	1,588	1,905	2,223	2,541	2,858	3,176	6,351	9,527	12,703	15,879	19,054	22,230	25,406	28,581	31,757

Guillemot

Table 40 Estimated annual	I a superior a superior and a subsection of a	a substantia da a da a da substantia da substantia da substantia da substantia da substantia da substantia da s	a subality of all as size a diavala a suba a state	and Tion 1. Cound Change anto 0. Clump houff and
Table 49 Estimated annual	I cumulative numbers of guillemoi	's predicted to be at risk of fr	IOFTAILTY TOLLOWING DISDIACEMENT TO	om her i 2 and 3 projects & 2 km putter

										Mortali	ty (%)									
	%	1	2	3	4	5	6	7	8	9	10	20	30	40	50	60	70	80	90	100
	10	176	353	529	705	882	1,058	1,234	1,410	1,587	1,763	3,526	5,289	7,052	8,815	10,578	12,341	14,104	15,867	17,631
	20	353	705	1,058	1,410	1,763	2,116	2,468	2,821	3,173	3,526	7,052	10,578	14,104	17,631	21,157	24,683	28,209	31,735	35,261
~	30	529	1,058	1,587	2,116	2,645	3,173	3,702	4,231	4,760	5,289	10,578	15,867	21,157	26,446	31,735	37,024	42,313	47,602	52,892
it (%	40	705	1,410	2,116	2,821	3,526	4,231	4,937	5,642	6,347	7,052	14,104	21,157	28,209	35,261	42,313	49,365	56,418	63,470	70,522
men	50	882	1,763	2,645	3,526	4,408	5,289	6,171	7,052	7,934	8,815	17,631	26,446	35,261	44,076	52,892	61,707	70,522	79,337	88,153
lace	60	1,058	2,116	3,173	4,231	5,289	6,347	7,405	8,463	9,520	10,578	21,157	31,735	42,313	52,892	63,470	74,048	84,626	95,205	105,783
Disp	70	1,234	2,468	3,702	4,937	6,171	7,405	8,639	9,873	11,107	12,341	24,683	37,024	49,365	61,707	74,048	86,389	98,731	111,072	123,414
	80	1,410	2,821	4,231	5,642	7,052	8,463	9,873	11,284	12,694	14,104	28,209	42,313	56,418	70,522	84,626	98,731	112,835	126,940	141,044
	90	1,587	3,173	4,760	6,347	7,934	9,520	11,107	12,694	14,281	15,867	31,735	47,602	63,470	79,337	95,205	111,072	126,940	142,807	158,675
	100	1,763	3,526	5,289	7,052	8,815	10,578	12,341	14,104	15,867	17,631	35,261	52,892	70,522	88,153	105,783	123,414	141,044	158,675	176,305

Razorbill

Table 50 Estimated annual cumulative numbers of razorbills predicted to be at risk of mortality following displacement from Tier 1, 2 and 3 projects & 2 km buffer

										Mortal	ity (%)									
	%	1	2	3	4	5	6	7	8	9	10	20	30	40	50	60	70	80	90	100
	10	49	97	146	195	243	292	341	389	438	487	973	1,460	1,947	2,434	2,920	3,407	3,894	4,380	4,867
	20	97	195	292	389	487	584	681	779	876	973	1,947	2,920	3,894	4,867	5,840	6,814	7,787	8,761	9,734
~	30	146	292	438	584	730	876	1,022	1,168	1,314	1,460	2,920	4,380	5,840	7,301	8,761	10,221	11,681	13,141	14,601
it (%	40	195	389	584	779	973	1,168	1,363	1,557	1,752	1,947	3,894	5,840	7,787	9,734	11,681	13,628	15,574	17,521	19,468
men	50	243	487	730	973	1,217	1,460	1,703	1,947	2,190	2,434	4,867	7,301	9,734	12,168	14,601	17,035	19,468	21,902	24,335
laceme	60	292	584	876	1,168	1,460	1,752	2,044	2,336	2,628	2,920	5,840	8,761	11,681	14,601	17,521	20,441	23,362	26,282	29,202
Disp	70	341	681	1,022	1,363	1,703	2,044	2,385	2,726	3,066	3,407	6,814	10,221	13,628	17,035	20,441	23,848	27,255	30,662	34,069
	80	389	779	1,168	1,557	1,947	2,336	2,726	3,115	3,504	3,894	7,787	11,681	15,574	19,468	23,362	27,255	31,149	35,042	38,936
	90	438	876	1,314	1,752	2,190	2,628	3,066	3,504	3,942	4,380	8,761	13,141	17,521	21,902	26,282	30,662	35,042	39,423	43,803
	100	487	973	1,460	1,947	2,434	2,920	3,407	3,894	4,380	4,867	9,734	14,601	19,468	24,335	29,202	34,069	38,936	43,803	48,670

References

- ABPmer, (2023), 'Review of Method Statement, Offshore Wind Ornithology Assessment for East Coast Phase 1 Projects', ABPmer Report No. R.4394, A report produced by ABPmer for An tSeirbhis Páirceanna Náisiúnta agus Fiadhúlra (National Parks and Wildlife Service)
- APEM. (2022), 'Review of evidence to support auk displacement and mortality rates in relation to offshore wind farms', APEM Scientific Report P00007416, Ørsted, January 2022, Final, 49 pp, https://infrastructure.planninginspectorate.gov.uk/wpcontent/ipc/uploads/projects/EN010098/EN010098-001044-Hornsea%20Project%20Four%20-
 - %20G1.47%20Auk%20Displacement%20and%20Mortality%20Evidence%20Review.pdf
- Busch, M., Buisson, R., Barrett, Z., Davies, S., Rehfisch, M. (2015), 'Review of the Habitat Loss Method for Assessing Displacement Impacts from Offshore Wind Farms', JNCC Report 551, Peterborough, https://data.jncc.gov.uk/data/f14d5e73-07ac-4705-b6da-1f3ec800e1ad/JNCC-Report-551-FINAL-WEB.pdf
- Bradbury, G., Trinder, M., Furness, B., Banks, A.N., and Caldow, R.W.G. (2014), 'Mapping Seabird Sensitivity to Offshore Wind farms', PLoS ONE 9(9): e106366. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0106366
- Deakin, Z., Cook, A., Daunt, F., McCluskie, A., Morley, N., Witcutt, E., Wright, L. and Bolton, M. (2022), 'A review to inform the assessment of the risk of collision and displacement in petrels and shearwaters from offshore wind developments in Scotland', A report to Marine Scotland,

https://www.gov.scot/binaries/content/documents/govscot/publications/research-andanalysis/2022/12/review-inform-assessment-risk-collision-displacement-petrelsshearwaters-offshore-wind-developments-scotland/documents/review-inform-assessmentrisk-collision-displacement-petrels-shearwaters-offshore-wind-developmentsscotland/review-inform-assessment-risk-collision-displacement-petrels-shearwatersoffshore-wind-developments-scotland/govscot%3Adocument/review-inform-assessmentrisk-collision-displacement-petrels-shearwaters-offshore-wind-developments-scotland/govscot%3Adocument/review-inform-assessmentrisk-collision-displacement-petrels-shearwaters-offshore-wind-developments-scotland.pdf

- Dierschke, J., Dierschke, V., Hüppop, O., Jachmann, K.F. (2011), 'Die Vogelwelt der Insel Helgoland', OAG Helgoland, Helgoland, https://ifvvogelwarte.de/fileadmin/user upload/Geschichtskapitel .pdf
- Dierschke, V., Furness, R.W., and Garthe, S. (2016), 'Seabirds and offshore wind farms in European waters: Avoidance and attraction', (Biological Conservation, Volume 202, pages 59-68), https://www.sciencedirect.com/science/article/abs/pii/S0006320716303196?via%3Dihub
- Horswill, C. and Robinson R. A. (2015), 'Review of seabird demographic rates and density dependence', (JNCC Report No. 552, Joint Nature Conservation Committee, Peterborough), https://hub.jncc.gov.uk/assets/897c2037-56d0-42c8-b828-02c0c9c12d13
- Furness, R.W., Wade, H.M. and Masden, E.A. (2013), 'Assessing vulnerability of marine bird populations to offshore wind farms', (Journal of Envvironmental Management, 119; 56-66), https://infrastructure.planninginspectorate.gov.uk/wpcontent/ipc/uploads/projects/EN010080/EN010080-001838-%C3%98rsted%20Hornsea%20Project%20Three%20(UK)%20Ltd%20-%20Appendix%2011%20-%20Furness%20et%20al.,%202013.pdf
- Furness, R.W. (2015), 'Non-breeding season populations of seabirds in UK waters: Population sizes for Biologically Defined Minimum Population Scales (BDMPS)', (Natural England

Commissioned Report Number 164), https://publications.naturalengland.org.uk/publication/6427568802627584 Furness, R.W., Wade, H.M. and Masden, E.A. (2013), 'Assessing vulnerability of marine bird populations to offshore wind farms', (Journal of Envvironmental Management, 119; 56-66), https://infrastructure.planninginspectorate.gov.uk/wpcontent/ipc/uploads/projects/EN010080/EN010080-001838-%C3%98rsted%20Hornsea%20Project%20Three%20(UK)%20Ltd%20-%20Appendix%2011%20-%20Furness%20et%20al.,%202013.pdf GoBe. (2022), 'Method Statement - Offshore Wind Ornithology Assessment for East Coast Phase 1 **Projects'** Hamer K.C., Humphreys E.M., Garthe S., Hennicke J., Peters G., Grémillet D., Phillips R.A., Harris M.P. & Wanless S. (2007) Annual variation in diets, feeding locations and foraging behaviour of Gannets in the North Sea: flexibility, consistency and constraint. (Marine Ecology Progress Series, 338, 295-305) Hamer, K.C., Holt, N. & Wakefield, E. (2011) The distribution and behaviour of northern gannets in the Firth of Forth and Tay area. A review on behalf of the Forth and Tay Offshore Wind Developers Group. (Institute of Integrative & Comparative Biology, University of Leeds). Humphreys, E.M., Cook, A.S.C.P and Burton, N.H.K. (2015), 'Collision, Displacement and Barrier Effect Concept Note', BTO Research Report No. 669, Thetford, Norfolk, https://www.bto.org/sites/default/files/shared_documents/publications/researchreports/2015/rr669.pdf Krijgsveld, K.L., Fijn, R.C., Japink, M., van Horssen, P.W., Heunks, C., Collier, M.P., Poot, M.J.M., Beuker, D. and Dirksen, S. (2011), 'Effect studies Offshore Wind Farm Egmond aan Zee. Final report on fluxes, flight altitudes and behaviour of flying birds', NoordzeeWind report OWEZ_R_231_T1_20111114_flux&flight / Bureau Waardenburg report nr 10-219. Bureau Waardenburg, Culemborg, Netherlands, https://www.buwa.nl/fileadmin/buwa upload/Bureau Waardenburg rapporten/06-467_effectstudies_offshore_windpark_Egmond_02.pdf Langston, R.H.W. (2010), 'Offshore wind farms and birds: Round 3 zones, extensions to Round 1 & 2 sites & Scottish Territorial Waters', (RSPB Research Report No. 39), https://tethys.pnnl.gov/sites/default/files/publications/Langston 2010.pdf Leopold, M.F., van Bemmelen, R.S.A., Zuur, A.F. (2013), 'Responses of local birds to the offshore wind farms PAWP and OWEZ off the Dutch mainland coast', Report C151/12. Imares, Wageningen, https://research.wur.nl/en/publications/responses-of-local-birds-to-theoffshore-wind-farms-pawp-and-owez MacArthur Green, (2021), 'Beatrice Offshore Wind Farm. Year 1 Post-construction Ornithological Monitoring Report 2019', https://marine.gov.scot/sites/default/files/bowl_2019_postcon_monitoring_report_v2.2_30042021.pdf MacArthur Green, (2023), 'Beatrice Offshore Wind Farm. Year 2 Post-construction Ornithological Monitoring Report 2021',

https://marine.gov.scot/sites/default/files/bowl_2021_post_construction_ornithology_mon itoring_report_25_07_2023.pdf

Maclean, I.M.D., Wright, L.J., Showler, D.A. and Rehfisch, M.M. (2009), 'A Review of assessment methodologies for offshore wind farms', (British Trust for Ornithology Report commissioned by COWRIE), https://tethys.pnnl.gov/sites/default/files/publications/Maclean-et-al-2009.pdf

Berwick Bank Offshore Wind Farm', https://marine.gov.scot/sites/default/files/scoping_opinion_7.pdf
Marine Scotland. (2022b), 'Marine Scotland - Licensing Operations Team Scoping Opinion for West of Orkney Offshore Wind Farm', https://marine.gov.scot/sites/default/files/scoping_opinion_-_west_of_orkney_-_june_2022.pdf
Marine Scotland (2017a), 'Scoping Opinion for the proposed Section 36 Consent and Associated Marine Licence Application for the Revised NnG Offshore Wind Farm and Revised NnG Offshore Transmission Works', http://www.gov.scot/Topics/marine/Licensing/marine/scoping/NnGRev2017/SO-092017
Marine Scotland (2017b), 'Scoping Opinion for the proposed Section 36 Consent and Associated

Marine Scotland. (2022a), 'Marine Scotland - Licensing Operations Team Scoping Opinion for

- Marine Licence Application for the Revised Inch Cape Offshore Wind Farm and Revised Inch Cape Offshore Transmission Works',
- https://marine.gov.scot/data/inch-cape-offshore-windfarm-revised-design-scoping-opinion
- Peschko, V., Mendel, B., Müller, S., Markones, N., Mercker, M. and Garthe, S. (2020), 'Effects of offshore windfarms on seabird abundance: Strong effects in spring and in the breeding season', Marine Environmental Research 162: 105157, https://www.sciencedirect.com/science/article/pii/S0141113620304402
- Skov, H., Heinänen, S., Norman, T., Ward, R.M., Méndez-Roldán, S. & Ellis, I. (2018), 'ORJIP Bird Collision and Avoidance Study Final report – April 2018', The Carbon Trust. 247 pp, https://tethys.pnnl.gov/sites/default/files/publications/Skov-et-al-2018.pdf
- SNCBs. (2022a). Joint SNCB Interim Displacement Advice Note. JNCC, Natural Resources Wales, Department of Agriculture, Environment and Rural Affairs/Northern Ireland Environment Agency, Natural England and NatureScot. https://data.jncc.gov.uk/data/9aecb87c-80c5-4cfb-9102-39f0228dcc9a/joint-sncb-interim-displacement-advice-note-2022.pdf
- SNCBs. (2022b). Joint SNCB Interim Advice on the Treatment of Displacement for Red-throated Diver. JNCC, Natural Resources Wales, Department of Agriculture, Environment and Rural Affairs/Northern Ireland Environment Agency, Natural England and NatureScot. https://data.jncc.gov.uk/data/9aecb87c-80c5-4cfb-9102-39f0228dcc9a/interim-sncb-advicertd-displacement-buffer.pdf
- Trinder M, O'Brien SH and Deimel J (2024), 'A new method for quantifying redistribution of seabirds within operational offshore wind farms finds no evidence of within-wind farm displacement', Front. Mar. Sci. 11:1235061.

https://www.frontiersin.org/articles/10.3389/fmars.2024.1235061/full

Vanermen N., E.W.M. Stienen, W. Courtens, T. Onkelinx, M. Van de walle & H. Verstraete (2013), 'Bird monitoring at offshore wind farms in the Belgian part of the North Sea - Assessing seabird displacement effects', (Rapporten van het Instituut voor Natuur- en Bosonderzoek 2013 (INBO.R.2013.755887). Instituut voor Natuur- en Bosonderzoek, Brussels, Belgium),

https://tethys.pnnl.gov/sites/default/files/publications/Vanermen-et-al-2013.pdf Zuur, A. F. (2018). Effects of wind farms on the spatial distribution of guillemots. Wageningen Marine Research T, 31(0), 317. Available at: https://www.noordzeeloket.nl/publish/pages/161187/effects_of_wind_farms_on_the_spati

al_distribution_of_guillemots.pdf

Unit 5, Desart house, Lower New Street, Kilkenny https://www.group.rwe/en

Registered office: Unit 5, Desart house, Lower New Street, Kilkenny